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In this work, we explore the affect of several gating mechanisms on the Resnet CNN architecture 
with two primary objectives: 

1. To devise a deep CNN architecture that will handle the in-distribution and out-of-distribution 

examples differentially by relegating certain deeper layers to be used more exclusively by the 
hard examples while the easy examples skip them. 


2. To understand qualitatively how the network can be made to generalise/memorise differentially 
and whether this will result in a performance increase from the baselines. 

RELATED WORK 

The idea of routing information through a DNN on information highways using a gating 
mechanism for better optimisation and easier training was first introduced in Highway Networks 
(ref. 6). This was extensively studied by (ref. 2). The skip connection experiments in the paper (ref. 
2) give us a good starting point to understand the kind of gating strategies that have been 
explored for residual units in the past, their capacity and affect on the overall network 
performance. It helps us validate behaviour of different gating mechanisms that we experiment 
with.


LAYER LEVEL GATING EXPERIMENTS 

Gating at the layer level refers to using gated skip connections instead of identity skip 
connections at each residual unit in a Resnet. Hence, in these architectures, there is a gate for 
each residual unit.


We start by conducting preliminary experiments on CIFAR with Resnet 110 and Resnet 164 based 
on the paper Identity mappings in deep residual networks (ref. 2). The reproduced baseline 
models and the Pre-residual models on Cifar 10 and Cifar 100 are given in tables 1.1 and 1.2. The 
training schedule used is specified by training scheme 1 under implementation details. We first 
reproduce the exclusive gating and shortcut-only gating experiments on CIFAR. It is evident from 
the results that manipulating the identity skip connections in this manner leads to optimisation 
issues and doesn’t enhance performance. 


TRAINING WITH REGRESSION LOSS 


We next train models with the same exclusive and shortcut-only gates but with an additional  
regularisation term computed as L2 norm of g(x). This added loss is averaged over the L2 norm of 
g(x) values from all residual units (54) in the network. The total loss is back propagated through 
the entire network during back propagation.  


We use a gate loss term as a regularisation term to enable the model to generalise better and 
attain a parsimonious solution in accordance with the rule of Ockham's razor. Intuitively, this will 
encourage the model to use lesser number of layers in the prediction of majority of the samples 
as there is a penalisation on using the layers. 




, where n is number of residual units in the 
Resnet base architecture 

Total L oss = Classi f icat ion L oss + λ /n(∑n
1 g(x)2)

Model Mean test 
accuracy

Standard 
deviation 
(accuracy)

Median Paper's claim, 
mean

mean training 
error

Resnet 110 93.478 0.2644239021 93.59 93.39 7.35E-06
Preresnet 110 93.786 0.1221883792 93.78 93.63 5.98E-06
Resnet 164 94.494 0.1108151614 94.54 94.07 6.79E-06
Preresnet 164 94.946 0.1492648653 94.96 94.54 6.35E-06

Table 1.1 Cifar 10 baselines and Pre-residual models averaged over 5 runs 

Model Mean test 
accuracy 

Standard 
deviation 
(accuracy)

Median Paper's 
claim,mean

Mean training 
error

Resnet 110 71.816 0.1820164828 71.76 NA 0.000078272

Resnet 164 74.466 0.9917308103 74.63 74.84% 0.000060864

Preresnet 164 75.804 0.4873704956 75.78 75.67% 0.000042808

Table 1.2 Cifar 100 baselines and Pre-residual models averaged over 5 runs 

Model Test accuracy Paper’s claim Training error 

Resnet 110, exclusive gating 92.87 91.3 0.4085

Resnet 110, exclusive gating, with 
l2norm loss, lambda=0.01

93.24 NA 0.3468

Resnet 110. Shortcut only gating 93.57 93.09 0.3723

Resnet 110, shortcut only gating, 
with l2norm loss, lambda=0.01

93.57 NA 0.3389

Table 1.3 Cifar 10 skip connections experiments, (single run)

Model Test accuracy Training error 

Resnet 164, exclusive gating 40.19 713.4

Resnet 164, exclusive gating, with 
g_l2norm loss

53.64 0.863

Resnet 164. Shortcut only gating 73.52 3.274

Resnet 164, shortcut only gating, 
with g_l2norm loss

72.3 0.015

Table 1.4 Cifar 100 skip connections experiments, (single run)



The skip connections results can be found in tables 1.3 and 1.4. All performance results above are 
reported after training on entire train set (50k images). They have been trained using the same 
learning scheme as the baselines. It has been observed that performance degrades on using the 
L2 norm loss on this architecture.


LAYER LEVEL 2-WAY CROSS ENTROPY GATING 


Here we use 2 values g1(x) and g2(x) instead of a single g(x) value to control the gate. g1(x) and 
g2(x) are obtained from the gating layers at each residual unit.





For each residual unit, we experiment with 2 types of gating layer implementations:


1. Use a 1x1 convolution with 2 filters as the gating layer. The output is a 3D tensor with depth 2. 
The 2 gate feature maps are reshaped and used as g1(x) and g2(x) in the gate after passing 
the flattened 2D tensor through a softmax. The tensors g1(x) and g2(x) are also used to 
calculate the cross entropy loss with the targets specified in a manner that favours using the 
identity skip connection over the output from that unit’s layers (all targets are set to the column 
index corresponding to g2(x) in the concatenated [g1(x) ,g2(x)] tensor). This is assuming that 
when g2(x)=1, the layers in that unit are skipped and when g1(x)=1, the output from the unit’s 
layers is passed forward.


2. Use a 3x3 convolution with 2 filters as gating layer. Rest of the implementation is same as 
implementation (1)  





Trained on a 45k/5k train to validation split ratio. Uses training scheme 1, trained for 250 epochs, 
only initialisation from scratch has been explored for this architecture. Trained for 9 lambda values 
ranging from 1e-5 to 1e+3 (increasing by a factor of 10 each time). Implementation (1) performs 
best for lambda=1e-5; implementation (2) gives best performance at lambda=1e-2. But the 
models with best performing hyper parameters are also poorer than the baselines.


BLOCK LEVEL GATING EXPERIMENTS 


In this category of experiments, we apply inter residual unit skip connections. The idea is to skip 
multiple residual units in contrast to skipping a convolutional layer inside the same residual unit 
which is the case in layer level gating. In our experiments, this type of skip connection gating 
mechanism has been applied over a block of consecutive residual units. We conducted 
experiments on 2 types of Resnets for cifar 10 and cifar 100 datasets (ref. 1): 


I. Imagenet type Resnet 34 with [3,4,6,3] residual units in subsequent blocks  

II. Cifar type Resnet 110 and Resnet 164 with [18,18, 18] residual units in subsequent blocks 


EXPERIMENTS ON IMAGENET TYPE RESNETS  

Baseline Resnet 34 model trained for 164 epochs gives test_accuracy = 93.04%, (paper claims 
92.5% with same training schedule, but on Resnet 32, which has [5, 5, 5] residual units in 
subsequent blocks). 


In these architectures, we applied the skip connection and gating mechanism only over block 3 
consisting of 6 residual units. The skip connection is the output of the 1st residual unit of B3, 
named o1. We specify o2 to be the output the last residual unit of B3. The gate is a soft gate, the 
gating value g(x) controls the affect of o1 and o2 on the output of the gate which in turns forms 
the input of the last block (B4). The idea is that the hard samples can have higher influence on the 
5 remaining residual units where they can be memorised as compared to the easy samples that 
will skip the layers in question.


MODEL 1.


Gate Out put = g1(x) * ResidualUnitOut + g2(x) * x

Total L oss = Classi f icat ion L oss + λ /n∑n
1 (Gate Cross Entropy L oss)



To get the gating value g(x), we flatten the output of the 1st residual unit of B3 and pass it through 
a fully connected block (512 unit FC followed by a single unit FC) which outputs a scalar value 
g(x). This is used as the gate control value after passing it through a sigmoid function. The L2 
norm of g(x) is used to compute a gate loss term which is added to the total loss. Total loss is 
back propagated through the entire network. The gating mechanism is same as the one employed 
for resnet 110 in Figure 1.    







We conducted experiments on cifar 10 for this architecture. We used 2 initialisation strategies; 

first, we initialise the layers randomly using kaiming He initialisation and refer to this as scratch 
initialisation; second, we initialise the models with the baselines trained on the same dataset. The 
results are given in tables 2.1 and 2.2. they perform slightly better than the baseline and a lambda 
value of 0.01 gives best performance. 


Gate Out put = g(x) * o2 + (1 − g(x)) * o1
Total L oss = Classi f icat ion L oss + λ∑ g(x)2

lambda Test Accuracy Training loss 

lambda=0.01 93.36% 0.6168

lambda=1e-5 93.28% 1.007

lambda=1e-4 93.16% 0.8833

lambda=1.0 92.90% 1.259

lambda=1e-3 92.83% 1.006

lambda=0.1 92.80% 1.244

lambda=10.0 92.45% 1.716

lambda=100.0 87.96% 8.266

lambda=1000.0 82.48% 24.26%

Table 2.1: Model 1, L2 norm of g, training from scratch

lambda Test Accuracy Training loss 

lambda=0.01 93.46% 0.8773

lambda=1e-5 92.98% 0.7847

lambda=1e-4 92.96% 1.001

lambda=1.0 92.95% 1.258

lambda=1e-3 93.35% 0.7033

lambda=0.1 92.85% 1.166

lambda=10.0 92.50% 1.537

lambda=100.0 88.67% 2.487

lambda=1000.0 81.42% 24.81

Table 2.2: Model 1, L2 norm of g, training from baseline



MODEL 1.2 


We also trained model 1 by using norm between o1 and output of gate as gate loss term instead 
of norm of g. The architecture remains same as model 1.  







When trained with a constant lr=0.1, it gives 95.312% test accuracy. 


MODEL 2


The gating mechanism is applied over block 3 but the gating value g(x) is obtained in a different 
fashion. We flatten the output of the 1st residual unit of B3 and pass it through a fully connected 
block (512 unit FC followed by a 10 unit FC). We use the output of the FC passed through a 
softmax function to compute an entropy metric. This entropy value is passed through a sigmoid 
function to get the final gating value. We also experiment with another version where the entropy 
is not passed through sigmoid. No additional gate loss is used. 





Table 2.3 shows the results of experiments conducted with different initialisation strategies and 
choice of usage of sigmoid after entropy calculation.  


Training schedule used for all gating experiments on Resnet 34 is specified by training scheme 1. 
given under the implementation details section.   


EXPERIMENTS ON CIFAR TYPE RESNETS  

We next performed experiments on Resnet 110 and Resnet 164 as these are the standard resnet 
baselines for cifar dataset and it gives us an established base to compare our gating mechanisms 
with.

 

Resnet 110 and Resnet 164 have 3 blocks, each with 18 residual units stacked together. In all 
these experiments, unless specified, the gate is applied only over the last block (B3). 
Downsampling using stride 2 convolutions is performed only at the 1st residual unit of each block. 
The output feature map dimensions of all subsequent residual units in a block remain same. In 
order to have the skip connection and block output with the same dimensions in the gate, we use 
the output of the 1st residual unit as the skip connection. 


The gates have been designed in a manner that the in-distribution samples will use the skip 
connection and skip the entire block (except the 1st residual unit of the block) and the out-of-
distribution samples will pass through the block in order to utilise more model parameters offered 
by the layers in the block under consideration. The idea of using an additional loss term 
comprising the gate control parameters (g(x)) as a regularisation term is that the outliers pay a 
price for using the extra layers.  


Gate Out put = o2 * g(x) + o1 * (1 − g(x))
Total L oss = Classi f icat ion L oss + λ∑ [o1 − (o2 * g(x) + o1 * (1 − g(x)))]2

Total L oss = Classi f icat ion L oss

Model Test Accuracy Training loss 

With sigmoid, scratch 93.06% 0.5628

With sigmoid, baseline init 93.43% 0.5653

Without sigmoid, scratch 93.23% 0.5236

Without sigmoid, baseline init 92.90% 1.352

Table 2.3 - Model 2: using entropy as g



MODEL 1. 


This gating mechanism is exactly same as model 1 of Imagenet type resnet experiments. Using a 
FC block with a singular scalar output which is used as the gate control variable g(x) after passing 
it through sigmoid. L2 norm of g(x) is used to compute gate loss term. Refer to Figure 1. For the 

architecture. 


, Where o1 is output of 1st residual unit of B3, o2 is output 
of B3  

 

Here, we initialise all models with their respective baselines trained on the same dataset as the 
one we wish to train on after incorporating gating modifications. We train for a total of 250 epochs 
on the entire train set using training scheme 1. Experiments have been conducted with 9 lambda 

Gate Out put = g(x) * o2 + (1 − g(x)) * o1

Total L oss = Classi f icat ion L oss + λ∑ g(x)2

 lambda  Test Accuracy  Training loss 

1E-02 92.55 1.80E-05

1E-05 92.77 9.276E-06

1E-04 92.78 1.095E-05

1E+00 92.22 2.231E-05

1E-03 92.76 1.317E-05

1E-01 92.49 2.31E-05

1E+01 92.64 2.74E-05

1E+02 92.19 2.528E-05

1E+03 91.81 2.682E-05

Table 3.1: Model 1: CIFAR 10,  L2 norm of g



values ranging from 1e-5 to 1e+3. Tables 3.1 and 3.2 enlist the results for Cifar 10 and Cifar 100 
respectively. These models perform poorer than the baselines which has a 93.478% test accuracy 
on cifar 10 and 74.466% test accuracy on cifar 100.


MODEL 2


This gating mechanism is same as model 2 of Imagenet type resnet experiments. Using a 10 way 
softmax as output of gate FC, we calculate entropy which is used as g(x) value. This entropy value 
is scaled about the origin and passed through a sigmoid function to get the final gating value. No 
regularisation term is used in this model. The architecture is given in figure 2. 







We only train models from their respective baselines and the results are shown in table 3.3. 


Total L oss = Classi f icat ion L oss

 lambda Test Accuracy Training loss 

1E-02 72.78 1.4922E-04

1E-05 72.51 6.361E-06

1E-04 73.57 4.142E-04

1.0E+00 73.33 3.903E-04

1E-03 73.16 2.178E-04

1E-01 73.26 3.166E-04

1.0E+01 72.86 4.132E-04

1.0E+02 72.18 4.329E-04

1.0E+03 73.19 7.2820

Table 3.2: Model 1: CIFAR 100,  L2 norm of g



MODEL 3


We next experiment with a gate where we use cross entropy loss to compute gate loss. The 
output of the gate FC is a 2 way softmax, one representing ‘skip’ or g1(x) and the other 
representing ‘do not skip’ or g2(x). While computing the gate cross entropy loss, we set the 
targets in such a manner that it favours the g1(x) or ‘skip’ output, meaning that we want majority 
of the samples to skip the block and only a few outliers to have an affect on the block layers. 


, Where o1 is the skip connection over the block 3 layers, o2 is 
the output of block 3   




We experiment with the Pytorch inbuilt binary cross entropy loss and cross entropy loss. We use 
both initialisation from baseline and kaiming he initialisation from scratch for cifar 10 dataset. 
Cross entropy loss performs slightly better than the binary cross entropy loss. Training scheme 1 
has been followed. The results are shown in tables 3.4, 3.5, 3.6, 3.7. However, the performance of 
these models fails to surpass their respective Resnet baselines. 


Gate Out put = g1(x) * o1 + g2(x) * o2

Total L oss = Classi f icat ion L oss + λ∑ (Gate Cross Entropy L oss)

Dataset Test Accuracy Training loss 

Cifar 10 93.91 4.95E-06

Cifar 100 74.88 9.036E-05

Table 3.3: Model 2: using entropy as g, no extra loss term, training from baseline 
initialisation



IMPLEMENTATION DETAILS


In accordance with (ref. 1), all Resnet 110 architectures use the basic block, with 6n+2 stacked 
weighted layers and all Resnet 164 architectures use the bottleneck block, with 9n+2 weighted 
layers.

Training Scheme 1: 
Training schedule used to train these is similar to the one prescribed in the original papers (ref. 
1,2). We use a weight decay of 0.0001 and momentum of 0.9, adopt the kaiming weight 
initialisation and BN with no dropout. These models are trained with a mini-batch size of 128 on a 
single GPU. For all CIFAR experiments on resnet depth greater than or equal to 110, we warm up 
the training by using a smaller learning rate of 0.01 at the beginning for 390 iterations and go back 
to 0.1 after that. We divide it by 10 at epochs 82 and 123, and train for a total of 250 epochs. Data 
augmentation for training: 4 pixels are padded on each side, and a 32×32 crop is randomly 
sampled from the padded image or its horizontal flip. For testing, we only normalise a single view 
of the image before using it.   


lambda Test Accuracy Total Train Loss

1.00E-05 92.32 9.71E-06

1.00E-04 92.61 9.81E-06

1.00E-03 92.6 1.82E-05

1.00E-02 92.44 2.24E-05

1.00E-01 92.49 2.30E-05

1.00E+00 92.34 2.20E-05

1.00E+01 92.41 2.14E-05

1.00E+02 92.53 2.34E-05

1.00E+03 91.74 3.15E-05
Table 3.5: Model 3, cifar 10, baseline init, binary 

cross entropy gate loss 

lambda Test Accuracy Total Train Loss

1.00E-05 92.34 9.08E-06

1.00E-04 92.6 1.26E-05

1.00E-03 92.33 1.54E-05

1.00E-02 92.68 2.43E-05
1.00E-01 92.54 2.21E-05

1.00E+00 92.6 2.31E-05

1.00E+01 92.15 2.33E-05

1.00E+02 86.59 1.04E-03

1.00E+03 10 NAN

 Table 3.6: Model 3, cifar 10, scratch init, cross 
entropy gate loss 

lambda Test Accuracy Total Train Loss

1.00E-05 92.33 2.33E-05

1.00E-04 92.97 1.15E-05

1.00E-03 92.4 1.70E-05

1.00E-02 92.57 2.35E-05

1.00E-01 92.04 2.32E-05

1.00E+00 92.34 2.31E-05

1.00E+01 92.38 2.33E-05

1.00E+02 90.31 1.97E-04

1.00E+03 18.1 2.44E-02
 Table 3.7: Model 3, cifar 10, baseline init, cross 

entropy gate loss 

lambda Test Accuracy Total Train Loss

1.00E-05 92.66 9.13E-05

1.00E-04 92.35 1.12E-05

1.00E-03 92.3 2.48E-05

1.00E-02 92.56 2.18E-05

1.00E-01 92.57 2.17E-05

1.00E+00 92.59 1.98E-05

1.00E+01 92.6 2.13E-05

1.00E+02 92.48 2.14E-05

1.00E+03 91.4 4.11E-05
Table 3.4: Model 3, cifar 10, scratch init, binary 

cross entropy gate loss 



Training error plateaus after initial 150 epochs when training the baselines which is not the case 
when training the gated models. Hence, all models have been trained upto 250 epochs (all gated 
models attain stable accuracy/training error when trained this way).


Note - Gating module or gating layers used throughout refers to the layer(s) that output the value used to 
control the gate, (commonly known as a ‘g(x)’). These layers output g(x) which in turn decides the fate of 
each sample as it passes through the gate 
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