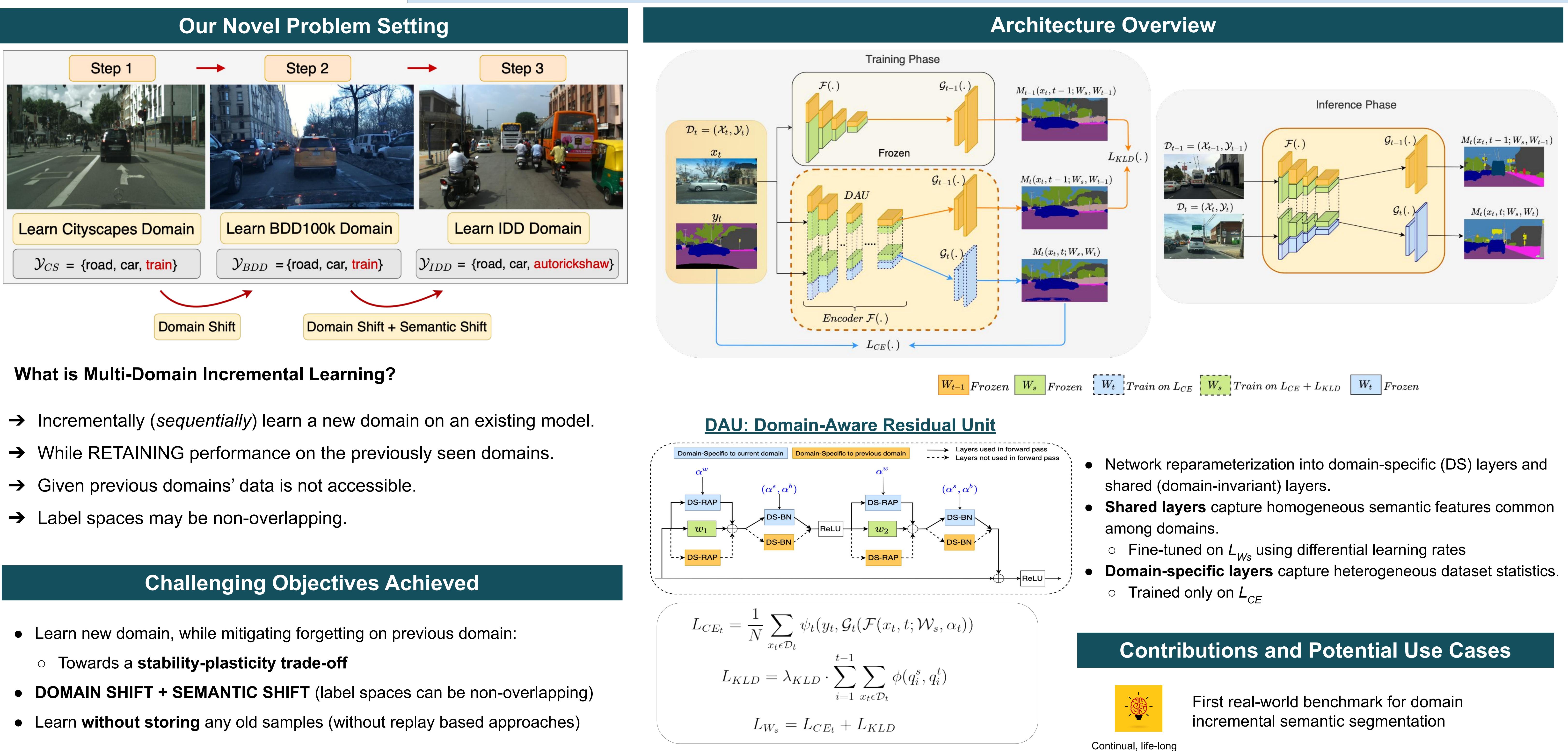


Can a segmentation model trained on the road scenes of a particular city extend to incrementally learn novel geographical domains?



How is our setting different from existing semantic segmentation settings?								
Problem Setting	Sequential	Differences, Source vs target		Data (availability, supervision)		Goals	Solution Type	
		Label Space	Domain Shift	Source	Target		Task-Aware	Multi-Head
UDA	\checkmark	same	\checkmark	\checkmark	$\sqrt{(unlabeled)}$	learn new	×	X
Class-IL	\checkmark	different	×	×	\checkmark	retain old, learn new	×	×
MDL	×	different	\checkmark	\checkmark	\checkmark	retain all	\checkmark	\checkmark
MDIL (ours)	\checkmark	different	\checkmark	×	\checkmark	retain old, learn new	\checkmark	\checkmark

Multi-Domain Incremental Learning for Semantic Segmentation

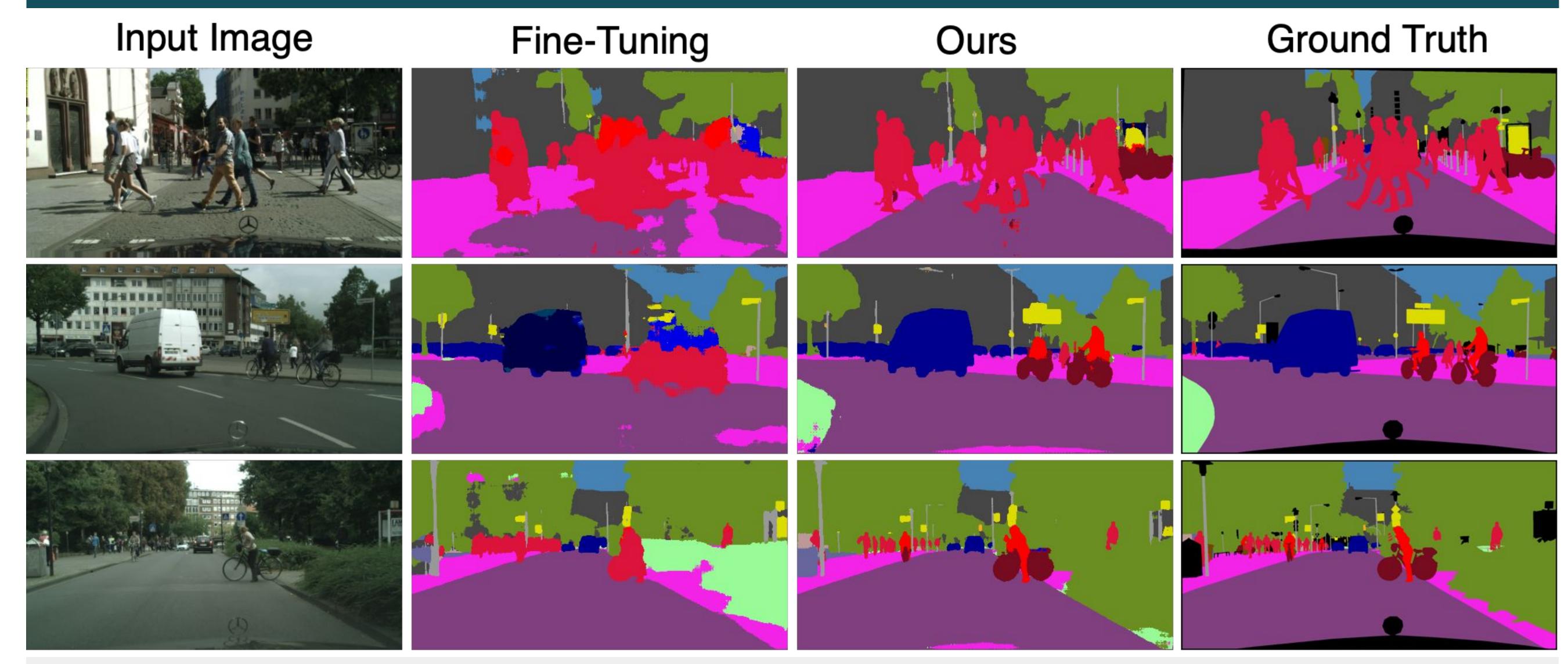
Prachi Garg¹

Rohit Saluja¹ Vineeth N Balasubramanian² Chetan Arora³ Anbumani Subramanian¹ C. V. Jawahar¹ ¹CVIT - IIIT Hyderabad, India ²IIT Hyderabad, India ³IIT Delhi, India

learning

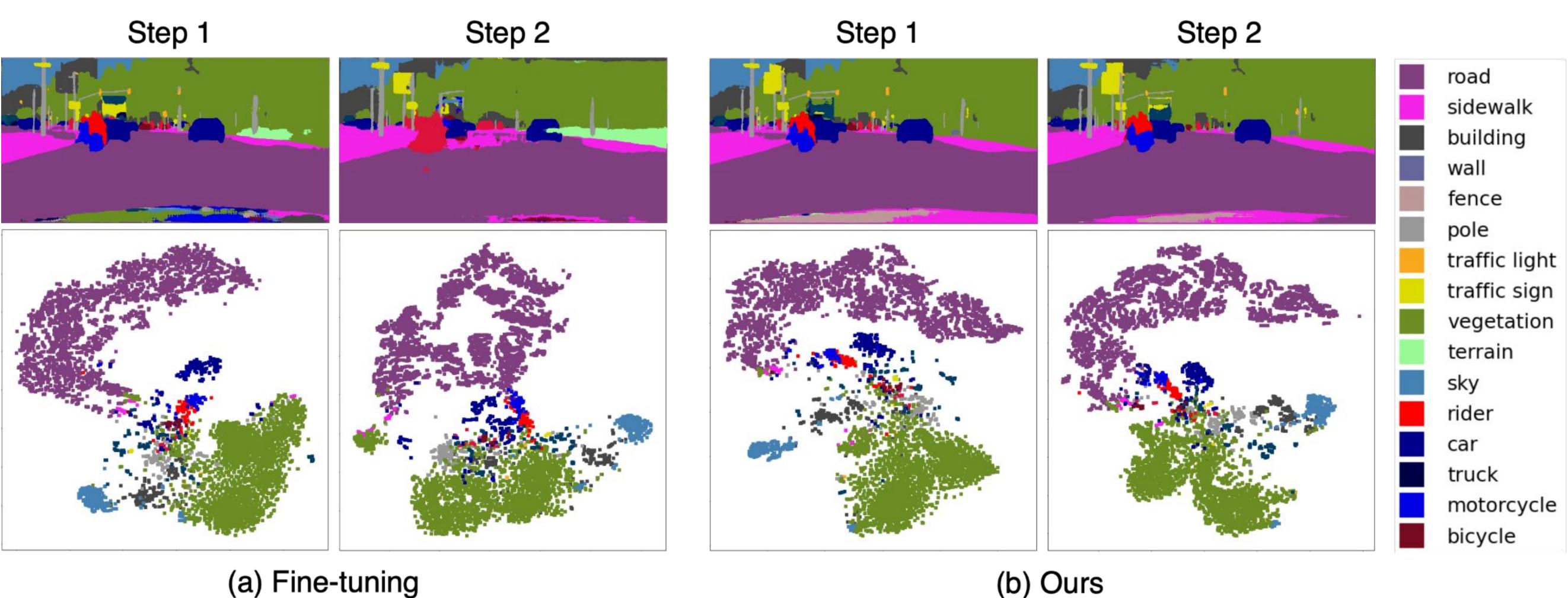
Extensible model that is capable of learning across new domains, as and when the data is collected

Studies transfer learning for cross-domain semantic segmentation



IL Step	Step 1	Step 2: $D_A \neq D_B, \mathcal{Y}_A = \mathcal{Y}_B$			Step 2: $D_A \neq D_B, \mathcal{Y}_A \neq \mathcal{Y}_B$			
2	CS	$CS \rightarrow BDD$			$CS \rightarrow IDD$			
Methods	CS ↑	CS ↑	BDD ↑	$\Delta_m\%\downarrow$	CS ↑	IDD ↑	$\Delta_m\%\downarrow$	
Single-task	72.55	72.55	54.1		72.55	61.97		
Multi-task	72.55	69.42	57.69	1.16% (†)	71.11	60.85	1.89%	
FT	72.55	40.05 (-32.5)	52.74	23.66%	36.81 (-35.74)	61.56	24.96%	
FE	72.55	72.55 (-0.00)	42.93	10.32%	72.55 (-0.00)	45.69	13.14%	
Ours	71.82	65.21 (-7.34)	55.73 (+1.63)	3.55%	64.58 (-7.97)	59.11 (-2.86)	7.80%	

IL Step	Step 3: $D_A \neq D_B, \mathcal{Y}_A \neq \mathcal{Y}_B$						
	$CS \rightarrow BDD \rightarrow IDD$						
Methods	CS ↑	BDD ↑	IDD ↑	$\Delta_m\%\downarrow$			
Single-task	72.55	54.1	61.97				
Multi-task	69.37	58.13	59.37	0.38%			
FT	30.49 (-42.06)	32.05 (-22.05)	60.65	33.62%			
FE	72.55 (-0.00)	42.93 (-11.17)	46.09	15.42%			
Ours	59.19 (-13.36)	49.66 (-4.44)	59.16	10.39%			



Semantic Segmentation

 $CS \rightarrow BDD$: A comparison of CS latent space before and after learning BDD. Our model preserves the latent space of previous domain, which gets distorted during fine-tuning.

Results And Analysis

CS (Step 1) \rightarrow **BDD (Step 2):** Results on Cityscapes *after* incrementally learning BDD100k: Our model mitigates forgetting by 25.16% as compared to Fine-tuning baseline

• Forgetting is mitigated significantly

- When the label spaces are same, forward transfer of knowledge achieved.
- When label spaces are different, there can be domain interference.