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Recurrent neural networks are effective models to process sequences. However, they are unable to learn
long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced
the Transformer, a model solely based on the attention mechanism that is able to relate any two positions
of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the
state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of
a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption.
Fortunately, the deep learning community has always been interested in improving the models’ efficiency,
leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge
distillation. Recently, researchers have directly addressed the Transformer’s limitation by designing lower-
complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide
range of solutions, it has become challenging for researchers and practitioners to determine which methods to
apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This
survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and
by providing a comprehensive explanation of the methods’ strengths, limitations, and underlying assumptions.
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1 INTRODUCTION

Sequences arise naturally in a wide range of domains, notably in natural language, biology, and
software executions. Rumelhart et al. [97] introduced a family of models called recurrent neural
networks (RNNs) based on the idea of parameter sharing to process variable-length sequences.
Given an input sequence X comprising n tokens x(?) of dimension d, recurrent neural networks
iteratively construct a sequence of hidden representations h‘? and produce a sequence of outputs
y9 as illustrated in Figure 1. Unfortunately, vanilla RNNs often suffer from vanishing or exploding
gradients, which prevent them from learning long-term dependencies. Hochreiter and Schmidhuber
[44] addressed this limitation with the now widely popular long short-term memory (LSTM)
network, which circumvents the gradient issues with paths through time. Cho et al. [17] later
improved over the LSTM with the simpler gated recurrent unit (GRU).
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Fig. 1. The computational graph of a recurrent neural network. The input and output sequences are depicted
in blue and red, respectively. The position, also known as the time-step, is indicated in superscript. The weight
matrices W, U, and V are shared across all positions. Reproduced with permission [31]. Copyright 2021 IEEE.
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Recurrent neural networks align the input and output sequences, that is, there is a one-to-one
mapping between the two sequences. Depending on the task, this property of RNNs may be too
restrictive: for instance, translation requires outputting a sequence whose size is often different from
that of the input while aligning tokens at different positions. Sutskever et al. [112] addressed this
limitation by introducing the sequence-to-sequence framework in which a first network (encoder)
processes the entire input sequence and returns its last hidden representation ™, effectively
encoding the input into a fixed-size vector called context. The context then serves as the initial
state for a second network (decoder), which generates the output sequence in an autoregressive
manner. The decoding stops when a special end-of-sequence token is generated. Figure 2 illustrates
the sequence-to-sequence framework.
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Fig. 2. The sequence-to-sequence framework where the encoder and decoder are recurrent neural networks.
The input sequence (blue) is encoded into a fixed-size context R (red), which serves as the initial state of
the decoder. Reproduced with permission [31]. Copyright 2021 IEEE.

In practice, the fixed-size nature of the hidden representation hinders the effectiveness of recur-
rent neural networks [15]. Indeed, as the input sequence is processed, information is iteratively
stored into the hidden representation that may be too small to retain all the relevant information
for the task. In that case, useful data is inevitably lost, which may significantly impact the model’s
performance. Bahdanau et al. [3] introduced an alignment mechanism called inter-attention to over-
come the bottleneck of the sequence-to-sequence framework. This attention mechanism computes
a different representation of the input for each output step, effectively allowing the decoder to
“look at” the relevant part(s) of the input for each output step. Thereby, the inter-attention alleviates
the encoder’s burden to encode all information about the input sequence into a fixed-size vector.
Formally, the context is the weighted sum of the encoder’s hidden representations h;, fori = 1,.. ., n,
where the weights are computed with a feed-forward neural network. For a comprehensive survey
of the attention mechanism, we refer the reader to Galassi et al. [33] and Weng [130]. Figure 3
illustrates the inter-attention mechanism.

Moreover, recurrent neural networks do not scale efficiently to longer sequences due to their
iterative nature [121]. In particular, RNNs struggle to learn dependencies between distant positions.
One measure of this limitation is the relative effective context length (RECL) introduced by Dai et al.
[22]. The RECL is the largest context length that leads to a substantial relative gain over the best
model. In other words, increasing the context length over the RECL yields a negligible increase in
performance over the best model. The authors estimated that the relative effective context length of
LSTMs on natural language data is limited to approximately 400 words. Besides, Khandelwal et al.
[58] empirically observed that LSTMs sharply model recent positions but only vaguely remember
the distant past.
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1.1 Transformer

This inherent limitation of recurrent neural networks has prevented them from being successfully
applied to domains that require processing long sequences such as DNA. To overcome this limita-
tion, Vaswani et al. [121] introduced the Transformer, a sequence-to-sequence model built without
recurrences. Instead, the Transformer relies solely on the attention mechanism: the inter-attention
between the encoder and decoder (see Figure 3), and the self-attention, also known as intra-attention,
within the encoder and decoder. The self-attention’s main advantage is its ability to relate any two
positions of the input sequence regardless of their distance, thus increasing performance signifi-
cantly on a wide range of tasks, including natural language processing (NLP) [10, 24, 121], computer
vision [12, 27, 57], speech recognition [40, 110, 140], and biological sequence analysis [139]. Karita
et al. [55] evaluated a Transformer against a sequence-to-sequence Bi-LSTM baseline on automatic
speech recognition (ASR), speech translation (ST), and text-to-speech (TTS). The attention-based
models outperformed the baseline on 13 corpora out of 15 for monolingual ASR and realized more
than 10% relative improvement in 8 languages out of 10 for multilingual ASR. The Transformer
improved the BLEU score from 16.5 for the baseline to 17.2 on ST while performing on par for
TTS. Table 1 reports the performance improvements brought by popular Transformer architectures
over previous state-of-the-art models across different domains. As of this paper’s writing, the
Transformer has become the de facto model for numerous sequence processing tasks.
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Fig. 3. The inter-attention mechanism. The attention weight al.(t) depicts the strength with which the i-

th encoder hidden representation h() contributes to the context of t-th decoder step. Reproduced with
permission [31]. Copyright 2021 IEEE.

As an illustration of an end-to-end application of the Transformer, let us consider the speech
recognition task. In hybrid approaches, the recognition system consists of independently trained ma-
chine learning components, often an acoustic model, a pronunciation model, and a language model.
Instead, in end-to-end approaches, the recognition system consists of a single model comprising
several parts trained together. Zhang et al. [140] introduced an end-to-end speech recognition model
based on Transformer encoders called the Transformer Transducer that outperformed previous
hybrid and end-to-end approaches on the LibriSpeech benchmarks.

The Transformer’s capacity comes at the cost of a quadratic computational and memory com-
plexity with respect to the sequence length. Therefore, training large Transformers is prohibitively
slow and expensive. For instance, Liu et al. [74] introduced RoBERTa, which was pre-trained on
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Table 1. Relative improvements brought by popular Transformer architectures over previous state-of-the-art
models. Absolute differences are reported between parenthesis. Sources are: [121] for machine translation,
[27] for image classification, [24, 91] for text classification, and [69] for speech-to-text.

Task Dataset Previous SOTA Transformer’s Architecture Relative Improvement
. . newstest2014 (EN-to-DE) MoE (GNMT) [103] Vanilla [121] 9.1% (+2.37 BLEU®)

Machine Translation .o\ (42014 (EN-to-FR) 3.1% (+1.24 BLEU)
ImageNet Noisy Student (EfficientNet-L2) [134] ViT [27] 0.2% (+0.15% Acc)

Imace Classification CIFAR-10 BiT-L (ResNet152x4) [60] 0.1% (+0.13% Acc)
& CIFAR-100 1.1% (+1.04% Acc)
VTAB (19 tasks) 1.8% (+1.34% Acc)

. . SST2 Sparse byte mLSTM [39] BERT[24] 1.8% (+1.70% Acc)

Text Classification ) o Single-task BILSTM + ELMo + Attn [124] 72.9% (+25.5 MCY)
o - . T 5

Speech-to-text Iﬂar}speech (test-clean) LAS (LSTM) [13, 86] Convformer [40] 13.6% (-0.3 WER’)
librispeech (test-other) 25.0% (-1.3 WER)

1024 high-end V100 graphics processing units (GPUs) for approximately a day. Although numer-
ous large pre-trained Transformers have been publicly released, fine-tuning them on the tasks
of interest is still computationally expensive. Furthermore, the sequence lengths are restricted
by the amount of memory available. Indeed, practitioners typically use large mini-batches with
relatively short sequences because the Transformer’s optimization is known to be particularly
unstable with small mini-batches. Typically, a GPU with 16 GB of memory handles sequences up to
512 words. Consequently, there exists an actual need for lighter and faster Transformers as only
a few large organizations can afford to train massive models. As of the writing of this paper, the
largest dense Transformer is GPT-3 [10] which requires 355 years to train on a V100 GPU, costing
around 4,600,000$ of cloud instances!’.

1.2 Lighter and Faster Transformers

Over the years, numerous approaches have been proposed to reduce the computational and memory
costs of neural networks, many of which have been applied to Transformers. In this paper, such
methods are referred to as general since they apply, and have been applied, to a wide range of models.
General methods are often orthogonal, and consequently, several of them may be combined to
precisely fine-tune the network’s capacity, computational cost, and memory usage. However, general
methods may be insufficient as the model complexity typically remains unchanged. Therefore,
many works introduced lower-complexity variations of the Transformer, referred to as x-formers.
In this survey, the Transformer’s alternatives are categorized depending on whether they sparsify
the attention, factorize it, or modify the network’s architecture. Please note that this survey aims
to provide a comprehensive summary of the methods that improve the Transformer’s efficiency
and that fine-grained taxonomies have already been proposed by Tay et al. [116] and Lin et al. [68].
Accordingly, our taxonomy will remain purposefully coarse.

Recently, Tolstikhin et al. [118] and Liu et al. [70] amongst others argued that the powerful yet
expensive self-attention mechanism is not necessary to achieve state-of-the-art results and thus
challenged the preconception that the self-attention is the source of the Transformer’s success.
Consequently, they introduced networks without self-attention that are competitive with Trans-
formers for image classification and language modelling at the same computational cost. Yu et al.
[137] expanded on this idea with a more general and flexible architecture called MetaFormer where
the mechanism to relate the tokens is not specified while the other components are kept the same

https://lambdalabs.com/blog/demystifying-gpt-3
2Bilingual evaluation understudy (BLEU), higher is better.
3Matthews correlation (MC) coefficient, higher is better.
4Word error rate (WER), lower is better.
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as the Transformer. Despite the recent success of attention-free architectures, such networks are
outside the scope of this paper as they arguably remove the Transformer’s core mechanism and are
discussed in appendix.

The remainder of this survey is organized as follows. Section 2 introduces the Transformer’s
architecture and the origin of the quadratic complexity. Section 3 investigates the popular general
methods that have been applied to Transformers to reduce the computations and memory footprint.
Section 4 explores the recent lower-complexity Transformers. Section 5 explains the limitations of
the different approaches and the current evaluation methodology, Section 6 provides a discussion
on the broader impact of lighter and faster Transformers, and Section 7 points out potential future
research directions. Finally, Section 8 concludes this survey. Practitioners and researchers can find
detailed practical guidelines regarding the general and specialized methods in appendix, as well
as a summary of the specialized methods (see Table 4) and a discussion about some of the most
popular attention-free alternatives.

2 TRANSFORMER

This section formally introduces the attention mechanism, the Transformer’s architecture, and the
root cause of its quadratic complexity.

outputs
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Fig. 4. The Transformer’s computational graph [121]. From left to right, the scaled dot product self-attention,
the encoder, and the decoder. Note that both the encoder and decoder comprise L identical layers, of which
only one is depicted.

2.1 Attention Mechanism

The attention mechanism relies on three matrices, namely Q, K,V € R"xd commonly referred to as
“queries”, “keys”, and “values”, respectively. The attention outputs the sum of the values weighted
by a compatibility or alignment score between each token, which is computed with the function
Score(Q, K) € R™", Intuitively, if the i-th query is highly compatible with the j-th key, then the
Jj-th value greatly contributes to the i-th attention’s output. The attention mechanism may be
written as:

Attention(Q, K, V) = Score(Q, K)V. (1)
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Since the compatibility score directly controls the alignment between the tokens, many functions
have been proposed. In the original paper, the Transformer relies on the scaled dot product attention.
The dot product refers to the computation of the compatibility score between a single query and a
single key. In practice, however, the compatibility scores are computed simultaneously for every
query and key by multiplying Q with K. Indeed, the (i, j) entry of the QK™ multiplication is
equal to the dot product between the i-th query and the j-th key. In order to obtain a probability
distribution over the positions, referred to as attention weights, each row of QK" is passed through
a Softmax function defined as follows:

Xi

e
—— fori=1,...,n. 2
2;‘1:16)9 @

Softmax(x); =

where x € R”. Since the dot product grows large in magnitude for large values of d, thereby pushing
the Softmax into a region of small gradients, a scaling factor Vd is introduced. Thus, the scaled dot
product attention is given by:

Attention(Q, K, V) = Softmax (Q\/KET ) V. (3)

Nonetheless, the attention presented above may not be flexible enough if the relevant information
for the task is scattered across different regions of the input space. That is due in part to the Softmax
being exponential, which amplifies the differences between the values. As a result, only a few
attention weights are large, i.e., only a few positions are strongly attended. Vaswani et al. [121]
addressed this limitation with the multi-head attention. The d-dimensional queries, keys and values
matrices are first linearly projected h times with distinct, learned projections to di, dx and d,
dimensions, respectively. On each projection, an independent attention instance called head is
applied, and the output of each attention head is concatenated before being linearly projected. The
Transformer’s multi-head scaled dot product attention is given by:

MultiHead(Q, K, V) = [heady; ...; head, |W°. (4)
Q
oW (KWf)T

head; = Softmax
l ( Vi

) 1448 (5)

where W? € RA¥dk Wf( € Rxdk WY € R are the matrices that project the queries, keys, and
values into the i-th subspace, respectively, and where W© € R"@%*? is the matrix that computes a
linear transformation of the heads. Typically, di = d/h where d is the input and output dimension,
and h is the number of heads. For the sake of clarity, methods that modify the attention will be
explained in the context of a single head (see Equation 3).

Thus far, the attention mechanism has been described as a general method. The Transformer relies
on two specific instances of this mechanism: the intra-attention, popularly known as self-attention,
and the inter-attention, sometimes referred to as cross-attention. In the case of inter-attention,
the queries correspond to the decoder’s hidden representations, and the keys and values are the
encoder’s outputs. It allows the decoder to look at the relevant parts of the input to produce the
output. In the case of self-attention, the three matrices are linear projections of the layer’s input,
which allows the encoder and decoder to focus on the relevant part of the sequence for each
position, similarly to the inter-attention depicted in Figure 3.
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2.2 Encoder

The Transformer’s encoder is a function defined as the composition of L identical layers or blocks,
each composed of two sub-layers. The first sub-layer is the aforementioned self-attention mecha-
nism. The second sub-layer is a simple fully connected feed-forward network applied position-wise,
that is, independently and identically to every position. The feed-forward network increases the
encoder’s expressiveness and transforms the self-attention’s output for the next layer.

Inspired by ResNet [42], a skip connection, shortcut connection, or residual connection is
applied around each sub-layer to create a direct path for the gradient to flow throughout the
network. Notably, residual connections make the training of very deep neural networks more
stable. Additionally, both sub-layers’ outputs are normalized after the residual connection with the
layer normalization technique, referred to as LayerNorm [64]. Normalization is a widely adopted
technique in deep learning that enables faster and more stable training. Although the rationale
behind the normalization’s empirical success is not yet fully understood [67], it has been conjectured
that this results from a smoother optimization landscape, and to a lesser extent, from a reduction
in internal covariance shift [100]. Figure 4 depicts the computational graph of an encoder’s layer.

In natural language processing, the input sequence X would typically represent a sentence or a
paragraph, and the token x? would be its i-th word or subword embedding. Each encoder’s layer
is given by:

X 4 = LayerNorm(Attention(Q, K, V) + X) (6)
Xp = LayerNorm(FFN(X4) + X4) (7)
where X and X are the layer’s input and output, respectively, and Q, K, and V are linear projections

of X.
The feed-forward network is given by:

FFN(x) = max (0, xW; +b;)W; + b, (8)

where W, € R¥4 and W, € R¥*4 and where d ' is the dimension of the hidden layer. Note that
the feed-forward network is defined for a row vector since it is applied position-wise, that is, it is
independently and identically applied to every position or row.

Finally, the position-wise layer normalization is given by:

x—p
Vo? +e
where © denotes the element-wise (Hadamard) product, where the average y and the standard
deviation ¢ are computed from all of the summed inputs, where the gain g and the bias b are

learned parameters of dimension d, and where € is a small constant used in practice for numerical
stability.

LayerNorm(x) = g ©® +b )

2.3 Decoder

The decoder is also composed of L identical layers. Although it is common for the decoder to
have the same number of layers as the encoder, one may adjust their depth independently. Each
decoder’s layer comprises three sub-layers. The first sub-layer is the self-attention mechanism, as
in the encoder, except that future positions are masked. Indeed, while the encoder is allowed to
look at future positions since the input sequence is entirely available, the decoder is autoregressive
and thus cannot look at future positions since they have not yet been predicted. Therefore, the
i-th position may only attend to positions less than i. The second sub-layer is the inter-attention
mechanism, which helps the decoder focus on the relevant parts of the input. Finally, the third
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sub-layer is a simple feed-forward network. As for the encoder, a residual connection and a layer
normalization are applied to each sub-layer.

Note that the decoder may be safely omitted when the task does not require the sequence-to-
sequence framework, such as sentiment analysis, which predicts whether a sentence is positive. One
of the most popular encoder-only Transformers is the Bidirectional Encoder Representations from
Transformers (BERT) [24], a state-of-the-art language model that learns contextualized embeddings.
Nonetheless, autoregressive tasks such as machine translation still require the sequence-to-sequence
framework.

2.4 Complexity

Intuitively, the quadratic complexity emerges from the computation of the compatibility score
between every pair of positions. More precisely, the QK multiplication requires n? computations
and memory. Such attention is said to be full since any output position is able to attend to any input
position. The attention pattern is visualized by means of a connectivity matrix, which indicates the
input positions that each output position is able to attend (see Figure 5).

Fig. 5. The connectivity matrix of the full attention. The i-th output position attends to the j-th input position
if, and only if, the cell (i, j) is coloured. The diagonal is highlighted to ease the reading.

What justifies such efforts from the community to improve the Transformer’s efficiency? In our
opinion, there are three primary motivations: affordability, scalability, and ecology.

The foremost reason is affordability. The Transformer has largely surpassed convolutional and
recurrent neural networks and achieved new state-of-the-art results across many tasks. However,
those networks have a linear complexity with respect to the sequence length [121], making them
affordable to most researchers and practitioners. As explained by Strubell et al. [109], this creates
three major issues: (1) it stifles creativity as researchers and practitioners that do not have access
to considerable resources are not able to experiment with Transformers, (2) it reinforces the “rich
get richer” cycle where successful labs and companies receive more funding due to their existing
accomplishments with Transformers, and (3) it forces smaller labs and companies to rely on private
cloud services that end up more expensive.

The second reason is scalability. The quadratic complexity prevents researchers and practitioners,
even those with access to considerable resources, from applying Transformers on long sequences
such as entire chapters or books, high-resolution images or videos, and DNA.

The third reason is ecology. It is now more apparent than ever that we must cut carbon dioxide
(CO2) emissions in half over the next decade to limit global warming. The large-scale infrastructures
used by the deep learning community consume a considerable amount of electricity, which is mainly
produced by non-renewable sources such as coal or gas [49].

Thereby, the following sections investigate popular and novel methods to make Transformers
faster and lighter.
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3 GENERAL APPROACHES

Computational resources have always been a limiting factor for deep learning models [63]. Therefore,
numerous approaches have been proposed throughout the years to design faster and lighter models.
This section introduces the most popular techniques that apply to virtually all neural networks.

Gradient Checkpointing [14]: Intermediate results computed during the forward pass, also
referred to as activations, are required to compute the gradients during the backward pass; therefore,
they are stored in memory. Activations typically account for most of the memory during training:
given an [-layer network, the number of intermediate results is proportional to the number of layers
(O(1)). With gradient checkpointing, also known as rematerialization, activations are stored only
for a subset of the layers. However, they must be recomputed during the backward pass, trading
memory for computations. In the extreme case where no activations are stored, the memory usage
becomes constant (O(1)) at the cost of a quadratic number of computations with respect to the
number of layers (O(I?)). Chen et al. [14] designed a scheme to select the preserved values that
reduces the memory requirement from O(I) to O(VI) at the cost of a single additional forward
pass per mini-batch. OpenAl implementation of gradient checkpointing [84] obtains an impressive
10X reduction in memory at the cost of a 20% increase in computation time.

Reversible Layers [25, 26, 35]: As explained above, the back-propagation requires the activations
of all intermediate layers, which are either stored in memory during the forward pass or recomputed
during the backward pass. As a solution to the latter case, reversible layers allow their activation to
be reconstructed exactly from the next layer; therefore, activations must only be stored for one layer
and their memory cost becomes independent of the network’s depth. More formally, each reversible
layer takes as input (x1, x2) and outputs (yy, y2) such that y; = x; + f(x2) and y, = x2 + g(y1). Each
layer’s activations are easily reconstructed as x; = y2 — g(y1) and x; = y; — f(x2).

Kitaev et al. [59] used reversible layers in their Transformer, called the Reformer, by combining
the attention and feed-forward sub-layers inside a reversible layer. Specifically, f(.) and g(.)
were the Attention(.) and FFN(.) functions, respectively. The authors observed that reversible
layers reduced the memory usage of a 3-layer Transformer without degrading its performance.
Nonetheless, reversible layers add numerical errors that accumulate over multiple layers and may
degrade the model performance. Therefore, they are not suited for very deep networks.

Gradient checkpointing and reversible layers are very much alike in that they trade computations
for memory by recomputing activations during backpropagation. This trade-off is sometimes
necessary: although computation bottlenecks entail longer running times, memory bottlenecks are
critical as they prevent using the model altogether.

Parameter Sharing: A simple approach to reduce the number of trainable parameters is to
impose sets of parameters to be equal in different parts of the network. In other words, the same
parameters are used for multiple operations but need to be stored only once in memory. Such
a technique is often referred to as parameter sharing, weight tying, or weight replication. As
explained in Section 1 and illustrated in Figure 1, recurrent neural networks are built around this
idea of parameter sharing to process variable-length sequences. Parameter sharing has also been
applied to Transformers. For instance, the Linformer [126] shares projection matrices across heads
and layers, and the Reformer [59] shares its queries and keys parameters, that is, W9 = WX Both
authors investigated the impact of parameter sharing and concluded that it did not degrade their
respective models’ performance on their tasks. Lan et al. [62] shared all parameters between layers,
which drastically reduced the number of parameters but also decreased the performance by up to
2.5% on average. They observed that sharing only the attention parameters resulted in a slight drop
in performance of 0.7% on average. The decrease in performance is to be expected since parameter
sharing reduces the number of free parameters, hence the model’s capacity.
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Pruning [63]: Smaller neural networks are not only faster and lighter, but they are also more
likely to generalize better than larger models because they presumably extract underlying explana-
tory factors without redundancy. To reduce the model size, weights with a small saliency, that is,
whose deletion have a small effect on the loss, may be removed from large models after training.
Methods that consider individual weights are said to be unstructured, and methods that consider
pieces of the network structure such as attention heads or layers are said to be structured. Many
structured and unstructured pruning schemes have been proposed, several of which have been
applied to Transformers. For instance, Sajjad et al. [98] reduced the size of BERT by 40% by drop-
ping complete layers while retaining between 97 and 98% of its original performance, and Michel
et al. [79] pruned away between 20% and 40% of BERT attention heads without any significant
loss in performance. Recently, the lottery ticket hypothesis has brought a new justification to
pruning neural networks. As introduced by Frankle and Carbin [32], the hypothesis states that a
“randomly-initialized, dense neural network contains a subnetwork that is initialized such that — when
trained in isolation — it can match the test accuracy of the original network after training for at most
the same number of iterations.”. Prasanna et al. [89] successfully verified this hypothesis on BERT,
even noticing that BERT worst subnetworks remain highly trainable. Nonetheless, pruning has
two limitations: a large model must be trained, and unstructured pruning schemes produce sparse
models unoptimized for modern GPUs and tensor processing units (TPUs).

Knowledge Distillation [2, 43]: The knowledge of a large model or an ensemble of models
(teacher) is transferred to a single smaller model (student) by training the student to reproduce
the teacher’s outputs or its internal behaviour. The cumbersome teacher is then discarded, and the
student is used at inference time. Given a parameter budget, networks trained with knowledge
distillation usually outperform models directly trained on the task. Sanh et al. [99], Tsai et al. [120],
and Jiao et al. [54] applied different knowledge distillation schemes on the original BERT [24] to
obtain lighter and faster models called DistilBERT, MiniBERT, and TinyBERT, respectively. Table 2
reports their compression, speed-up, and performance. Although knowledge distillation achieves
impressive compression ratios and performance trade-offs, a large teacher model still needs to be
trained, and the student may perform significantly worse than the teacher. For instance, BERTpasEg
achieves an accuracy of 52.8% on the CoLA task [129], while DistilBERT and TinyBERT only achieve
32.8% and 44.1%, respectively, according to Jiao et al. [54].

Table 2. Multiple knowledge distillations of BERTpAsE. Speed-ups are evaluated on GPUs.

Model Compression  Speed-up  Mean Relative Performance
BERTgASE [24] 1.0% 1.0%x 100%
DistilBERT [99] 1.7x 1.6x 97%

MiniBERT [120] 6.0x 2.6 — 4.3% 97 — 99%
TinyBERT [54] 7.5% 9.4% 97%

Mixed-Precision [80]: Modern GPUs and TPUs perform at least twice as many half-precision
(16 bits) float operations as single-precision (32 bits) ones. A popular approach to accelerate training
and reduce memory consumption is storing and computing the weights, activations, and gradients
in half-precision. A master copy of the weights is stored in single-precision for numerical stability
and minimal performance loss. Thanks to NVIDIA’s Automatic Mixed-Precision included in some
of the most popular deep learning libraries, namely TensorFlow, PyTorch, and MXNet, using mixed
precision can be as simple as adding one line of code. Consequently, we highly recommend mixed-
precision. Jacob et al. [51] improved over this approach by quantizing both weights and activations
as 8-bit integers and biases as 32-bit integers, effectively allowing inference to be performed using
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integer-only arithmetic. Given a parameter matrix W, N-bit quantization rounds each parameter
to one of 2V codewords corresponding to bins evenly spaced by a scale factor s and shifted by a
bias z computed as follows:

max W — min W min W
s=———— and z=round (10)
2N -1
Each parameter W; ; is quantized to its nearest codeword, and dequantized as:
- Wij
W;j = round | — +z| —z| Xs (11)
s

In order to mitigate the performance loss associated with the low-precision approximation, Quan-
tization Aware Training (QAT) [51] quantizes the parameters during training. Since quantization is
not differentiable, gradients are approximated with a straight-through approximator [7]. Notably,
Zafrir et al. [138] quantized all matrix product operations in BERT fully connected and embedding
layers during training, reducing the memory footprint by 4x while retaining 99% of the original
accuracy on the GLUE [124] and SQuAD [94] tasks. Stock et al. [107] achieved an even higher
compression ratio with iterative product quantization (iPQ), which replaces vectors of weights
by their assigned centroid, and quantization of those centroids. The authors reduced the size of a
16-layer Transformer by 25X, making the model only 14 MB, while retaining 87% of the original
performance on the Wikitext-103 [78] benchmark.

While pruning and knowledge distillation achieve faster and lighter models by reducing the
number of parameters, mixed-precision and quantization instead reduce the number of bits per
parameter.

Micro-Batching [48]: Increasing model capacity and data throughput are efficient strategies
for improving performances in deep learning. However, increasing data throughput requires
transferring large mini-batches to the accelerators’ memory®, which is also used to store the model.
One way to partially avoid the trade-off between mini-batch size and model size is to use model
parallelism. GPipe [48] is a model parallelism library that enables users to distribute a model
by grouping layers into cells assigned to accelerators. To avoid the communication bottleneck
between accelerators due to the forward and backward operations, the authors proposed a novel
batch-splitting algorithm that further splits the mini-batch into micro-batches. As soon as the
first accelerator finishes the forward operation of the layers assigned to it for a micro-batch, it
sends the result over the communication link and starts processing the next micro-batch. After
finishing the last micro-batch’s forward operation, the accelerators wait for the first micro-batch’s
backwards operation results. This waiting time can be used to recompute the forward operation and
further reduce memory usage, known as rematerialization. Finally, once the backward operation is
completed on the last micro-batch, the algorithm sums all micro-batch’s gradients to obtain the
mini-batch’s gradient (see Figure 6). However, the result is not exact with layers that compute
statistics across all mini-batch examples, such as a batch normalization layer [50]. Finally, GPipe is
compatible with data parallelism, where multiple mini-batches are processed in parallel.

Huang et al. [48] empirically demonstrated that GPipe allows the maximum Transformer size to
scale linearly with the number of accelerators. For instance, a TPU v3 with 16Gb of memory can
only fit a 3-layer Transformer. With GPipe, the same TPU is able to fit 13 layers, while 128 TPUs
are able to fit 1663 layers, which is 127.9x more. Additionally, the authors distributed a 48-layer
Transformer across 8 TPUs and reported that the training throughput was 4.8 times higher with 32
micro-batches than with a single one.

5 An accelerator denotes any device that accelerates computation, such as a graphics or tensor processing unit.
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Fig. 6. Micro-Batching applied to a model distributed across three devices [48]. F; and B; denotes the
sequential forward and backward operations, respectively, performed by the i-th device. Computation on a
device may start as soon as the previous device in the computational graph has processed the first micro-batch.
Therefore, micro-batching reduces the waiting time of each device at the cost of inter-device communications.
Note that the model update is done synchronously at the end.

Mixture of Experts [52]: The core idea is to train multiple networks called experts, each of
which specializes only in a subset of the data, and a manager or router, which forwards the input
to the corresponding experts. A single network is used in practice, whose layers are composed
of multiple subsets of parameters (experts), effectively resulting in a sparsely activated model as
illustrated in Figure 7. Increasing the number of experts keeps the computational cost constant
since the model always selects the same number of experts for each input regardless of the number
of experts. Therefore, the mixture of experts (MoE) approach allows for massive models and is
particularly efficient for distributed systems in which experts are spread across devices. In that
case, the number of experts, and therefore parameters, scales with the number of devices available.
Despite these advantages, the mixture of experts has not yet been widely adopted as the method is
complex to deploy in practice. It imposes a communication cost between the devices, a computation
cost to select the experts for each input position, and makes training unstable. Recently, Fedus
et al. [30] introduced the Switch Transformer based on a carefully crafted mixture of experts.
Notably, given a fixed amount of computation per input position, the Switch Transformer reached
the same quality threshold as a vanilla Transformer five times faster (wall-clock time) on average.
Additionally, when trained further, the Switch Transformer outperformed the vanilla baseline.
However, this approach assumes that multiple regimes with distinct input to output relations
produce the data.

Difficult tasks often require large models to achieve the desired performance. However, such
models require powerful and expensive accelerators. Both micro-batching and the mixture of
experts offer an alternative to train such models on many relatively weak and inexpensive GPUs at
the cost of complex implementation.

Sample-Efficient Objective [19]: Large neural networks, especially Transformers, benefit from
being pre-trained with an unsupervised objective before being fine-tuned on the task of interest,
also called the downstream task. The core idea is to leverage large unlabelled datasets that are easy
to automatically collect in order to learn the data underlying explanatory factors and ultimately
improve the model performance. Concretely, pre-training initializes the network’s weights in a
“good” region of space. As pre-training of large models is often more compute-intensive than fine-
tuning, researchers regularly share pre-trained models to facilitate their adoption. Most notably,
Hugging Face [132] is an open-source library that contains an extensive collection of pre-trained
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Fig. 7. The computational graph of a single layer of the Switch Transformer’s encoder [30]. The Transformer’s
feed-forward network (FFN) has been replaced by a Switch FFN which independently routes each position to
an expert. The expert’s output is multiplied by the gate value. Note that the computational cost is independent
of the number of experts since a single expert is active for each position.

Transformers under a unified APIL. Nonetheless, researchers must sometimes pre-train models
themselves due to the peculiar nature of the data or the problem at hand. In that case, a sample-
efficient objective will reduce the computation required.

Recently, Devlin et al. [24] popularized the Cloze procedure [117] for pre-training under the
name of masked language model (MLM), which independently estimates the probability of masked
words given the rest of the sequence. Practically, 15% of the words are randomly selected, of which
80% are masked, 10% are replaced by a random word, and 10% are left unchanged. This task is
analogous to the reconstruction of corrupted input. Figure 8 illustrates the masked language model
objective.

Generator
(large Transformer)

! masked
i sequence

Fig. 8. The masked language model objective [24]. The masked words are depicted in red. The model makes
a prediction only for the masked words; thus, MLM is computationally inefficient.

Clark et al. [19] introduced the replaced token detection objective to speed up pre-training; a
small network (generator) first generates a plausible alternative for each masked word, then the
large model (discriminator) predicts whether each word has been replaced (see Figure 9). While
the masked language model makes a prediction only for the masked works, the replaced token
detection makes a prediction for every word. Therefore, the latter is more computationally efficient
than the former; in other words, less pre-training computations are required to achieve the same
performance on downstream tasks. Additionally, the authors reported that the representations
learned with their objective outperformed those learned with MLM given the same model size,
data, and computation. Most notably, they were able to outperform GPT on the GLUE benchmark
with 30X fewer computations.
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Fig. 9. The replaced token detection objective [19]. A plausible alternative of each masked word is sampled
from a small generator network. Then a discriminator predicts whether each word has been replaced.

Parameter Initialization Strategies: Optimizing deep networks is challenging in part because
of the considerable influence of the initial point on the iterative process. Notably, the initial point
determines whether the algorithms converge at all and, if it does converge, the speed at which
it converges as well as the quality of the solution [36]. Transformers are notoriously difficult to
train, typically requiring carefully tuned optimizers with adaptive learning rates, learning rate
schedulers, and large batches. Even then, convergence is not guaranteed. Consequently, Liu et al.
[73] and Huang et al. [47] concurrently proposed initialization schemes for the Transformer that
promise a smoother and faster optimization as well as better generalization performances.

Liu et al. [73] identified an amplification effect that significantly influences training: each layer
heavily depends on its residual branch®, making the optimization unstable as it amplifies small
parameter perturbations. Ultimately, the amplification effect may produce a notable change in the
Transformer’s output. Nonetheless, the authors observed that heavy dependencies on the residual
branches are necessary to unlock the Transformer’s potential and achieve better results. In order
to mitigate the amplification effect, Liu et al. [73] introduced the Adaptive Model Initialization
strategy, or Admin, that controls the dependency on the residual connections in the early stage of
training with a new parameter w. Formally, the i-th sub-layer output is given by

X; = LayerNorm(f;(X;-1) + Xi-1 O @), (12)

where f;(X), X;_1, and X;, denote the function, input, and output of the i-th sub-layer, respectively.
Although this is equivalent to rescaling some model parameters, the authors observed that rescaling
leads to unstable training in half-precision.

The proposed initialization strategy requires three steps. First, the model parameters are initialized
with a standard method such as the Xavier initialization [34] and the Admin parameter  with
ones. Then, one or a small number of mini-batches are forward propagated without updating
the parameters and record the output variance of each residual branch Var| f;(X;_1)]. Finally, the
Admin parameter is initialized as w; = \/Z j<i Var[fj(X;-1)]. Once the model has been trained, @
may be discarded.

The amplification effect is, however, not the only mechanism that makes Transformers notori-
ously difficult to train. Huang et al. [47] addressed two other issues: (i) Transformers are typically
trained with optimizers that rely on adaptive learning rates as conventional SGD fails to train them

®For a residual block f(x) + x, the residual branch refers to f(x) and the skip connection, shortcut connection, or residual
connection refers to x.
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effectively. However, adaptive learning rates have a problematically large variance in the early
stages of optimization, resulting in convergence issues [72]; and (ii) the magnitude of the error
signal propagated through LayerNorm is inversely proportional to the magnitude of the input [135].
Specifically, the norm of the layer normalization gradient is proportional to:

o[ o

ox

H dLayerNorm(x)
||l

Consequently, if the input norm ||x|| is larger than Vd, backpropagating through layer normalization
reduces the gradient magnitude for layers closer to the input. As a solution to both problems, Huang
et al. [47] proposed an initialization strategy called T-Fixup that restricts the magnitude of the
updates in the early stages of training, thus mitigating the vanishing gradient issue while eliminating
the need for layer normalization and warmup.

While Liu et al. [73] and Huang et al. [47] claim faster convergence, they did not report the
improvement.

Architecture Search: One of the most challenging goals in deep learning is to automatically de-
sign networks. Indeed, the problem of finding architectures that achieve the best performance with
the fewest operations and lowest memory footprint in a discrete search space is an NP-hard combi-
natorial optimization problem. Over the years, multiple approaches to Neural Architecture Search
(NAS) have been proposed, including reinforcement learning [141], evolutionary algorithms [95],
and bilevel optimization [71]. Notably, Zoph et al. [142] demonstrated that NAS is able to surpass
human-designed architectures on ImageNet by 1.2% top-1 accuracy while using 28% fewer compu-
tations. Nonetheless, neural architecture search methods are computationally expensive as they
usually require training each candidate model from scratch. As a solution, Pham et al. [88] proposed
Efficient NAS (ENAS), which constrains all candidates to be subgraphs of a single computational
graph, that is, to share parameters. Therefore, the ENAS’s controller decides which operations are
activated and relies on the models’ ability to adapt, similarly to dropout [106]. Efficient NAS reduces
the search computational budget by 1,000x over the original NAS [141]. Alternatively, Liu et al.
[71] proposed the Differentiable Architecture Search (DARTS), which casts the NAS problem as a
differentiable bilevel optimization problem. The first level consists of a continuous relaxation of the
discrete search space using a Softmax function over a list of candidate operations, and the second
level involves the model’s weights. However, the bilevel formulation requires training the weights
to convergence to evaluate the architecture gradient. To avoid this substantial cost, the authors
made the approximation of taking a single gradient step of the weights for one gradient step of
the architecture parameters. The authors obtained comparable performances to non-differentiable
NAS methods on ImageNet in the mobile setting using only 4 GPU-days, compared to 3,150 for
evolutionary algorithms [95] and 2,000 for NAS [142]. Differentiable Architecture Search obtained
comparable results to ENAS with a similar computational budget. We refer the reader to Elsken
et al. [29] survey for further detail on architecture search methods.

Nevertheless, neural architecture search methods are challenging to apply on Transformers
due to the memory requirements and training time. Therefore, recent works introduced methods
better suited for the Transformer. So et al. [105] modified the tournament selection evolutionary
architecture search [95] with Progressive Dynamic Hurdles (PDH), which dynamically allocates
resources to more promising architectures according to their performances. With PDH, the authors
optimized transformer architectures directly on the WMT 14 En-De task [9] which requires 10
hours of computation on a Google TPU v2 for the base Transformer model. Training directly on
this dataset is essential since the authors did not find a smaller surrogate dataset that transfers
well, such as CIFAR-10 for ImageNet. The Evolved Transformer matched the vanilla Transformer’s
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performance with only 78% of its parameters. Recently, Tsai et al. [119] profiled the Transformer’s
components on a TPU v2 and observed that some mechanisms substantially impact inference time:
attention queries, keys, and values dimensions, width and depth of feed-forward layers, number of
attention heads, and layer normalization mean computation. By decomposing these components
into building blocks and using binary variables, the authors perform a one-shot search for both
the architecture and the parameters with a single loss. They optimized this loss with gradient
descent on a continuous relaxation of the binary variables and used policy gradient algorithm. Tsai
et al. [119] were able to make miniBERT 1.7X faster with a performance drop smaller than 0.3%.
Compared to the original BERT, this is 33 to 36X faster.

Neural architecture search is a promising tool to design lighter and faster Transformers automat-
ically. Nonetheless, NAS imposes a high computational and memory cost, which may be avoided by
carefully engineering the architecture instead. For instance, the Lite Transformer [133] leverages
the Long-Short Range Attention (LSRA), where a convolutional layer is applied in parallel to the
self-attention in order to learn the local dependencies separately. The carefully handcrafted Lite
Transformer outperforms the Evolved Transformer [105] for the mobile NLP setting while requiring
about 14,000% less GPU time.

Conditional Computing [6]: Although large models are necessary for hard examples, smaller
models are likely to perform as well, if not better, on simpler ones. For instance, many words
such as “car” are easy to translate, while a few such as “can” require careful consideration of the
context’. As of this survey’s writing, most architectures apply a fixed number of operations to all
examples regardless of their difficulty. A more efficient approach would be to reduce the amount
of computation for simple examples. As a solution, Bengio [6] introduced conditional computing,
which dynamically adapts the model’s computational graph as a function of the input.

One way to implement conditional computing is with a mixture of experts, as introduced
previously. In that case, only a subset of the parameters is used for a given input, making the
computational graph sparse and the computation time almost constant with respect to the model
size. Another approach consists of keeping the number of parameters constant and letting the
model adjust its computation time separately for each input (according to the input’s value). This
approach is called Adaptive Computation Time (ACT) [38] and uses a recurrent mechanism to
transform the representations until a halting probability exceeds a given threshold. The model
learns to control this probability to minimize both the prediction error and the number of iterations,
called the ponder cost, which prevents the model from using an infinite amount of computation
before making a prediction. One shortcoming of the Adaptive Computation Time is its sensitivity
to the ponder cost, which controls the trade-off between speed and accuracy.

Dehghani et al. [23] applied ACT to a Transformer with a recurrent mechanism for the archi-
tecture’s depth. To implement this mechanism, the authors defined encoder and decoder blocks
similar to the original Transformer, except that each block is recurrent, sending its output back as
its input until the ponder cost becomes too high. Note that a fixed number of recurrent steps is
equivalent to a Transformer with tied parameters across all layers. With this new architecture called
Universal Transformer, the authors claimed that it is computationally universal (Turing-complete)
given enough memory. This property may help Transformers generalize to sequences longer than
the ones seen during training. The authors obtained state-of-the-art results on algorithmic and
language understanding tasks. ACT and the Universal Transformer apply the same layers iter-
atively, which may not be sufficiently flexible. Elbayad et al. [28] addressed this limitation with
the Depth-Adaptive Transformer (DAT), which applies different layers at every depth. The DAT

» « 5 G s

"Depending on the context, the word “can” has various meanings, including “be able to”, “may”, “jail”, and “metal container”.
See https://www.wordreference.com/definition/can.
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matches the performance of a well-tuned Transformer baseline while reducing the computation by
up to 76%. However, the authors did not provide a comparison between the Universal Transformer
and DAT.

In the same way that complex examples may require more computations, some may require access
to a longer context. As a solution, Sukhbaatar et al. [111] dynamically adjusted the attention span,
that is, the context length, by learning to mask the compatibility scores depending on the input. Their
approach achieved state-of-the-art on text8 and enwik8 [77] while requiring significantly fewer
computations. Alternatively, Li et al. [65] introduced the Decoder-end Adaptive Computation Steps
(DACS), which monotonically computes halting probabilities along with the encoder states and stops
the decoder computations in order to produce an output when the accumulation of probabilities
exceeds a given threshold. In other words, each decoder step only looks at the necessary information
as measured by the halting probabilities instead of looking at the entire input sequence.

4 SPECIALIZED APPROACHES

Since the Transformer’s quadratic complexity comes from the attention mechanism, most specialized
methods rely on a fast and light approximation of the original full attention. As will be explained
in greater detail in the rest of this section, the attention weight matrix is dominated by a few large
values and is approximately low-rank. These observations justify two distinct lines of work: sparse
attention and factorized attention. Alternatively, the complexity may be reduced without altering
the original attention mechanism and thus the Transformer’s capacity by directly modifying the
network’s architecture. Let us first investigate the approaches that rely on sparse attention.

Note that some approaches only consider autoregressive tasks, such as the left-to-right language
model, and in that case, the connectivity matrix is lower triangular as it is not permitted to attend
to future positions. Whenever possible, such works have been extended to the more general case
where attending to future positions is allowed in order to ease the comparison between the different
approaches.

4.1 Sparse Attention

Due to the exponential nature of the Softmax, only a few positions are strongly attended to.
Consequently, a conceptually simple way of reducing the Transformer’s complexity is to make
the matrix QK" sparse®, in other words, to only allow each position to attend to a subset of the
positions. Let us investigate sparse patterns that are (i) fixed and random, (ii) learned and adaptive,
and (iii) identified with clustering and locality sensitive hashing.

Fixed and Random Sparse Patterns [5, 16, 41, 66, 90, 125, 139]: One of the first models to
consider fixed sparse patterns is the Star-Transformer introduced by Guo et al. [41], which reduced
the complexity from quadratic to linear by only allowing attention between adjacent positions. In
order to preserve the Transformer’s ability to model long-term dependency, the authors relied on a
single global token. Global tokens, also known as shared relay nodes, can attend to every position,
and every position can attend to global tokens. Let us assume that the global token is located at
position 0. The i-th output position is allowed to attend to every input position if i = 0, otherwise, it
is allowed to attend to the j-th input positions for j = 0 and if i — 1 < j < i+ 1. Figure 10 illustrates
the Star-Transformer attention pattern.

Concurrently, Child et al. [16] introduced the Sparse Transformer which reduced the complexity
to O(ny/n) with two different sparse attention patterns: strided and fixed. Strided attention allows
the i-th output position to attend to the j-th input position if one of the two following conditions

8Since the matrix QKT is passed through a Softmax function, the masked values are set to minus infinity, effectively setting
their contribution to e = 0.
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Fig. 10. The connectivity matrices of the Star-Transformer [41].

is satisfied: (i +s) > j > (i —s) or (i — j) mod s = 0, where the stride s is chosen to be close to /.
Similarly, fixed attention allows i to attend to j if one of the two following conditions is satisfied:
floor(j/s) = floor(i/s) or (j mod s) > (s — c), where ¢ is an hyperparameter. Figure 11 illustrates
the strided and fixed attention patterns.

Input indices

Fig. 11. The connectivity matrices of the Sparse Transformer Child et al. [16]. (Left) Strided attention with a
stride of 3. (Right) Fixed attention with a stride of 3and ¢ = 1.

Alternatively, Wang et al. [125] introduced the Cascade Transformer, which relies on sliding
window attention whose size grows exponentially with the number of layers. More specifically, the
number of cascade connections at the layer [ is equal to 2.b.m! — 1, where b is the base window size
and m is the cardinal number; therefore reducing the complexity to O(n.b.m'). Cascade attention
is well suited for shallow networks, but its complexity tends to that of the full attention in deep
networks as depicted by the connectivity matrices in Figure 12.
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Fig. 12. The connectivity matrices of the Cascade attention [125] for the first four layers with a base window
b = 1 and a cardinal number m = 2. For instance, the window size of the third layer (I = 2) is equal to
2xbxml—1=7.

Li et al. [66] introduced the LogSparse-Transformer for forecasting fine-grained time series with
strong long-term dependencies. The LogSparse-Transformer relies on the eponym attention that
allows the i-th output to attend to the j-th inputs for j € {—2lleg 1l j — gllogil=1 " 5 _ o1 _
2000+ 20 i+ 2%, ..., i+ 2leg(n=DI=1 4 4 ollog, (=D ]} where |.| denotes the floor operation and
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N denotes the sequence length. Figure 13 illustrates the connectivity matrix of the LogSparse
attention. Since only O(log n) positions are attended to by each of the n positions, the complexity
of the LogSparse attention is O(nlog n). Additionally, the authors proposed two alternatives: (1) to
allow the i-th output to attend to the first k input positions, after which the LogSparse attention
is resumed, and (2) to divide the input sequence into subsequences, and to apply the LogSparse
attention on each of them.

Input indices
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Fig. 13. The connectivity matrix of the LogSparse attention Li et al. [66].

Qiu et al. [90] introduced BlockBERT, which relies on the block-wise attention: the input sequence
is split into nj, non-overlapping blocks, and positions in block i are only allowed to attend to positions
in block (i), where 7 denotes a permutation. The author chose to generate the permutations
by simply shifting the positions. For instance, the possible permutations of {1, 2,3} are {1, 2,3},
{3,1,2}, and {2, 3, 1}. The permutation {2, 3,1} means that the first block attends to the second
block, the second block attends to the third block, and the third block attends to the first block. In
the multi-head setting, a different permutation’ is assigned to each head. More formally, the output
position i is only allowed to attend to input j if the following condition is satisfied:

V4 ({—(i —Ump + 1J) = {—(j —Um + 1J (14)
n n

Figure 14 illustrates the connectivity matrix of the block-wise attention where a sequence of length
n = 12 is split into n, = 3 blocks. Although the block-wise attention reduces the memory and
computational cost by a factor np, the complexity remains quadratic with respect to the sequence
length.
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Fig. 14. The connectivity matrices of the block-wise attention [90] for nj = 3 blocks. The corresponding
permutations are written below the connectivity matrices.

Beltagy et al. [5] introduced the Longformer which further reduces the complexity to O(n) using
a combination of sliding window and global attentions (see Figure 15). The assumption behind
the sliding window attention is that the most useful information is located in each position’s

Note that if the number of heads is greater than the number of permutations, multiple heads must be assigned the same
permutation.
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neighbourhood. The sliding window attention is limited in that it requires O(+/n) layers to model
long-range dependencies. Thus, a few preselected tokens have a global attention: they can attend
to every position and be attended by every position. Consequently, the maximum path length
between any two positions is equal to 2. Zaheer et al. [139] introduced BigBird, which also achieves
a linear complexity using a combination of random, sliding window, and global attentions (see
Figure 15). BigBird has two configurations that the authors referred to as internal transformer
construction (ITC) and extended transformer construction (ETC). Similarly to the Longformer, the
former uses existing positions for global attention, while the latter uses additional tokens, increasing
the model’s capacity and performance. Interestingly, the extra location of ETC may be seen as a form
of memory. The authors proved that their sparse factorization preserves the theoretical properties
of Transformers with the full attention: the model is both a universal approximator of sequence
functions and Turing complete. However, BigBird without random attention outperformed BigBird
with it in most of their experiments.
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Fig. 15. The connectivity matrices of two sparse attention schemes. (Left) Longformer [5]. (Right) BigBird [139].
The attention is the combination of sliding window attention (blue), global attention (green), and random
attention (orange).

Learned and Adaptive Sparse Patterns [20, 104, 114]: Fixed and random patterns are hand-
crafted and may not be suitable for the data and task at hand. One may instead learn the relevant
patterns and adapt them based on the content.

In order to increase the flexibility of the block-wise attention, Tay et al. [114] introduced the
sparse Sinkhorn attention, which is equivalent to the block-wise attention whose keys have been
sorted in a block-wise fashion. In other words, the permutations are learned. More specifically,
the sparse Sinkhorn attention transforms the input sequence X € R™ into X’ € R™*? where
ny, is the number of blocks, and where X is equal to the sum of the input in that block. A simple
feed-forward network then learns a mapping R; € R™ from the i-th block X to all blocks. In
order to obtain a sorting matrix from R € R™*" that is, a matrix comprising only 0s and 1s, and
whose rows and column sum to one, the rows and columns are iteratively normalized. The sorting
matrix is then used to permute the keys, effectively learning which block to attend (see Figure 16).
The sparse Sinkhorn attention reduces the complexity to O(ni). Nonetheless, since the block size
is constant in the original paper, the complexity remains quadratic with respect to the sequence
length. Additionally, the authors proposed a truncated version of the sparse Sinkhorn attention,
which selects a few keys after sorting them, further reducing the complexity to O(n).

Recently, Shi et al. [104] put under the microscope the attention patterns learned by BERT [24]
and observed that the diagonal elements are less important compared to other positions, that is,
they contribute the least to the output, while neighbourhood positions and special tokens are
prominent. To confirm their observations, they dropped the diagonal element in BERT’s attention
such that each position is not allowed to attend to itself and noted that the performance remains
comparable to the original model. Additionally, they observed that models for different tasks have
various degrees of redundancy and hence can achieve various sparsity levels before significantly
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Fig. 16. The connectivity matrix of the sparse Sinkorn attention [114].

dropping performance. Consequently, Shi et al. [104] proposed to learn sparsity patterns for each
task in an end-to-end fashion with the Differentiable Attention Mask (DAM) algorithm. Let us
denote the attention score between the i-th output position (query) and j-th input position (key) as
aj,j. They proposed to compute the attention mask M; ; as the Gumbel-Sigmoid [76] of the attention
score a; j:

. (%G =G
M; j = Gumbel-Sigmoid(¢; ;) = Sigmoid [ ————— (15)
T
where Gy, G; are independent Gumbel noises Gy = —log(—1log(Ux)) generated from a uniform distri-

bution Uy ~ U(0, 1), and where 7 is a temperature hyperparameter. Note that the Gumbel-Sigmoid
becomes binary as 7 approaches 0. A penalty term A||M]||; is added to the loss to control the trade-off
between performance and sparsity. The resulting model called SparseBERT achieved 91.2% sparsity
while maintaining an average score of 80.9% on GLUE, i.e., only 3% lower than the full BERT.
Such an approach deviates from previous sparse attention whose patterns have been manually
handcrafted. To avoid learning completely unstructured sparsity patterns, the authors proposed to
enforce the first and last row/column of the attention mask to be active and all positions on each
line parallel to the diagonal to share their mask parameters.

As mentioned above, due to the exponential nature of the Softmax, most positions are lightly
attended to. In other words, most attention weights are small but non-zero. Instead, Correia et al.
[20] introduced the Adaptively Sparse Transformer that replaces the Softmax by the a-entmax
function, a differentiable generalization of the Softmax that pushes small weights to be exactly zero.
Formally, the a-entmax function is defined as:

a-entmax(z) = argmax p' z + HL(p), (16)
pend

where AY = {p e R?: ¥, p; = 1} and, for @ > 1, HY, is the Tsallis continuous family of entropies:

LS (p; - p%), 1
HI(p) = { *@D 2i(pj—pf), a# (17)
—2jpjlogp;, a=1
The authors showed that the solution to the equation 16 is
a-entmax(z) = [(a — 1)z — M1] &7, (18)

where [] denotes the ReLU function, 1 denotes the vector of ones, and A is the Lagrange multiplier
corresponding to the }}; p; = 1 constraint.

Interestingly, when a = 1, the a-entmax is equivalent to the Softmax, and the attention is dense,
and when « > 1, the output is permitted to be sparse. In their experiments, a scalar parameter a; ;
is learned for the j-th attention head of the i-th layer, and «; ; is computed as:

a;j =1+ sigmoid(a; ;) € ]1,2[ (19)
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Nonetheless, the Adaptively Sparse Transformer computes the attention score for each pair of
queries and keys. Consequently, the sparsity cannot be leveraged to improve the memory and
computation, resulting in a model that is 25% slower than the original Transformer in terms of
tokens per second.

As of this survey’s writing, unstructured sparse attention (whether fixed, random or learned) does
not benefit from efficient implementations and therefore cannot result in memory and computational
improvements. Nonetheless, there are exciting researches in that direction, as noted by Hooker
[45]. In contrast, some structured sparsity patterns benefit from efficient implementations. Recently,
NVIDIA introduced its Ampere architecture which efficiently compresses 2:4 structured sparsity
on rows, that is, two non-zero values in every four entries.

Clustering and Locality-Sensitive Hashing [59, 96]: The Softmax function is dominated by
the largest values, that is, by the keys and queries that have the largest dot product. Therefore, the
attention may be approximated by only comparing the most similar keys and queries. Although
this approach is a form of adaptive sparsity as the patterns depend on the data, they are presented
separately due to their conceptual difference.

Kitaev et al. [59] introduced the Reformer, which selects the set of keys that the query can attend
to by grouping them with an angular multi-round locality-sensitive hashing (LSH). Such hashing
scheme has a high probability of assigning the same value to similar vectors. Formally, queries and
keys are shared (Q = K) and bucketed using b hash values obtained as follows:

p=[x"R;-x"R] (20)
h(x) = argmax(pi) (21)

where ; denotes the concatenation operation, and where x € R? is a query/key and R € R*?/2 js a
random rotation matrix. Output positions are only allowed to attend to input positions that are in
the same bucket (see Figure 17). They are, however, not allowed to attend to themselves because
the dot product of a vector with himself will almost always be greater than the dot product with
other positions.

The authors chose a constant bucket size I, resulting in a number of buckets ng = n/lg. The
attention complexity is O(ng X llzg) which simplifies as O(n). This does not take into account the
computation of the hash values for each position. As only log np bits are required to encode ng
buckets, the complexity of computing hash values is given by O(nlognp), which simplifies as
O(nlogn). Consequently, the complexity of the Reformer’s attention is O(nlogn).

Input indices (sorted by bucket)

es (sorted by bucket)

Output

Fig. 17. The connectivity matrix of the Reformer [59]. Queries and keys are bucketed using LSH then sorted
by their bucket. Therefore, the i-th row of the connectivity matrix may not correspond to the i-th position in
the input sequence. Units can only attend other units in the same bucket, but not themselves because queries
and keys are equal. The colour represents buckets.

The Maximum Inner Product Search (MIPS) problem is the task of searching for the vector K; in
K ={K}, K3, - - ,K,} that maximizes the dot product with a given vector Q;. Note that the MIPS
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problem is particularly useful for the attention mechanism as Q; K; is directly proportional to the
contribution of the j-th value for the i-th attention’s output. There are multiple approaches to
approximately solve this problem, including tree-based and LSH-based. When the norm of every
K; is constant, the problem is equivalent to the Nearest Neighbour Search (NNS). Motivated by
this observation and to avoid the computational cost of learning sparsity patterns, Roy et al. [96]
proposed the Routing Transformer that relies on an online mini-batch version of k-means and a set
of centroids learned along the rest of the parameters. Like the Reformer, queries can only attend to
keys from the same cluster, inducing an adaptive or content-based sparsity pattern.

4.2 Factorized Attention

Wang et al. [126] demonstrated that the attention matrix Softmax (QK T/Nd ) is approximately low

rank. Consequently, another approach to reduce the Transformer’s complexity is to approximate
the attention by factorizing it into the product of two matrices with lower dimensions.

Low-Rank Factorization [113, 126, 136]: Wang et al. [126] introduced the Linformer, a linear
complexity model that approximates the attention with a low-rank factorization by first projecting
each key to a lower dimension before performing the dot product, thereby saving time and memory.
Formally, the low-rank attention is given by:

KT EK)T
Attention(X) = Softmax(Q ) V = Softmax(Q(—)) FV (22)
d Vd
—_——  — ~——
nxn nxd nxk kxd

where E, F € R with k < n, are two linear projection matrices learned during training. The
authors showed that E and F could be shared across heads and layers with virtually no performance
penalty.

Tay et al. [113] introduced a family of models called Synthesizers that learn the compatibility
scores without computing the pairwise dot products between the queries and keys. For instance,
the Dense Synthesizer learns the compatibility scores with a simple position-wise feed-forward
network that projects each of the n rows of X from R'*¢ to R™":

F(Xl) = maX(O, XWi+ bl)Wz + b2 (23)
where W, € R4 and W, € R¥", Finally, the attention is given by:
Attention(X) = Softmax(F(X))G(X) (24)

where G(-) : R — R™ is a projection of the input akin to the values. In order to improve the
efficiency, the authors proposed the Factorized Dense Synthesizer which first project the input X
with two feed-forward networks:

A=F4(X) eR™* and B =Fg(X)eR™, (25)

such that axb = n. Then, two tiling functions Ha(-) : R™¢ — R™ (@) and Hg(-) : R™b — R*(0-0)
are applied to A and B, respectively. Note that a tiling function simply repeats a vector multiple
times. Finally, the attention of the Factorized Dense Synthesizer is given by:

Attention(X) = Softmax(H4(A)Hg(B)")G(X) (26)

Additionally, the authors proposed a baseline called the Factorized Random Synthesizer, whose
compatibility scores are independent of the input. Formally, the Factorized Random Synthesizer’s
attention is given by:

Attention(X) = Softmax(R; R, )G(X) (27)
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where Ry, R, € R™ are two low-rank matrices learned during training. Although the Synthesizers
eliminate the need to compute the pairwise dot products, which speed up the model in practice,
the complexity remains quadratic with respect to the sequence length.

The Nystromformer [136] relies on the Nystrom method to generate a low-rank approximation of
the Softmax matrix. However, applying the Nystrom method directly to the Softmax would require
to compute the QK" product, which requires O(n?) computations and memory. As a solution,
the Nystromformer creates two subsets K and O of columns, called landmarks, from K and Q,
respectively. The authors applied the segment-means approach, which computes the landmarks as
the averages over predefined spans of keys and queries. Let S45 denotes Softmax(ABT /Vd) for
any matrix A and B. The Nystromformer approximates the Softmax matrix as:

QKT
Softmax (W ~ SQIQSEI%SQK (28)
where the superscript + denotes the Moore-Penrose inverse typically computed with the singular
value decomposition (SVD). Since the SVD is inefficient on GPU, the authors relied on an iterative
method that approximate SZ?I% as Z*. Finally, the Nystromformer’s attention is given by:

Attention(X) =~ SQIQZJ'SQKV (29)

which can be efficiently encoded in a computational graph.

Provided that the number of landmarks is constant and much smaller than the sequence length,
the Nystrémformer complexity is O(n). Depending on the number of landmarks and the sequence
length, the authors reported substantial gains over the Linformer and Longformer on the masked
language model and sentence order prediction objectives. Additionally, the representations learned
by the Nystromformer appear to transfer as well as BERT to different NLP tasks. Nonetheless, a
more extensive evaluation of the Nystromformer remains necessary.

Kernel Attention [18, 56]: A kernel K(-, -) is a function that takes two vectors as arguments
and returns the product of their projection by a feature map ¢(-):

K(x,y) = ¢(x)"$(y) (30)

Katharopoulos et al. [56] interpreted the Softmax as a kernel, decomposed it as an inner product in
the right space, and rearrange the computations in a clever way to reduce the complexity. More
specifically, the self-attention of a given query Q; may be rewritten using a mapping ¢(-):

s ew(0TK) v, _ srs(0) e(k)vy _ ¢(Q) sps(x)v]
- T T
Se(0fK)  zris(e) e(k)  g(e) Zie(K))
where the scaling factor Vd has been omitted for the sake of readability. The authors noted
that 37, (K j)V;_F and 37, #(K ;) must only be computed a single time, therefore reducing the

complexity from quadratic to linear both in terms of memory and computation. The vectorized
formulation of the numerator makes it simpler to see:

Softmax(Q] K")V = (31)

#(0) (4(K)" V) (32)
nxp pxn nxd

where the mapping ¢(-) : RY — R? is applied position-wise. Unfortunately, the feature map of
the exponential kernel is infinite dimensional. Hence, any finite kernel is an approximation of the
attention matrix and may be interpreted as a low-rank factorization. However, they are presented
separately here due to their conceptual difference. Katharopoulos et al. [56] approximated the
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attention matrix in the Linear Transformer with the feature map ¢(x) = elu(x) + 1, where the
function elu(-) denotes the exponential linear unit given by:

a(e*—1), x<0

X, x>0 (33)

elu(x) = {

where « is an hyperparameter. The Linear Transformer performed on par with the vanilla Trans-
former on autoregressive image generation, but poorly on automatic speech recognition.

Choromanski et al. [18] later demonstrated that the exponential is equivalent to a kernel with a
randomized mapping:

TN T+ lxll? + lyl?
exp(x'y) = Ew-no1y) [exp (w x T |exp|wiy= (34)
Consequently, the authors introduced the Performer, a linear complexity model that approximates
the attention by means of a kernel with the following feature mapping:

exp(—||x||*/2)
V2p

where w; ~ N(0,1;). To further reduce the variance of the estimator, w; are constrained to be
exactly orthogonal, which is achieved with the Gram-Schmidt process. The hyperparameter p
corresponds to the number of random features and controls the quality of the approximation.

Clustering and Locality-Sensitive Hashing [122]: As previously explained, clustering can
uncover sparse patterns by grouping queries and keys and only computing the attention between
positions within the same cluster. Alternatively, Vyas et al. [122] proposed to factorize the attention
with clustering by grouping queries into a fixed number of non-overlapping clusters and by
computing the attention between the cluster’s centroids and the keys. Consequently, the attention
score is only computed once per group of similar queries and broadcasted to all, resulting in linear
complexity. Since queries may be clustered differently across attention heads and since the attention
sub-layer includes a residual connection, two queries in the same cluster can have different output
representations. The authors proved that the approximation error for a given query is bounded
by its distance to its centroid multiplied by the spectral norm of the keys matrix. As such, the
K-Means algorithm can be used for minimizing the approximation error. However, K-Means in the
original space would be slow to compute as Lloyd algorithm has a complexity of O(ncdl), where c
is the number of clusters and [ is the number of Lloyd iterations. Instead, the authors first used
a locality-sensitive hashing scheme on the queries before applying K-Means with the Hamming
distance, which reduces the complexity to O (ncl + c¢bl + ndb), where b is the number of bits used
for hashing.

To further improve the approximation, Vyas et al. [122] proposed the improved cluster attention
that separately consider the k keys with the highest attention for each cluster. Intuitively, keys
with high approximated attention may have low attention for some queries, resulting in a large
approximation error. As a solution, the dot product between these top-k keys and all queries
belonging to the corresponding cluster is computed. Then, the attention is rescaled by the total
probability mass assigned to these top-k keys.

Compared to the Reformer, Vyas et al. [122] method is significantly faster (43% lower epoch
time) while being significantly more accurate (35% lower phone error rate) for speech recognition
on the Wall Street Journal.

[exp(wy x);...;exp(w, x);exp(— w)x);...;exp(—wyx)|  (35)

P(x) =
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4.3 Architectural Change

Finally, the Transformer’s complexity may also be reduced by modifying the model’s architecture
and preserving the original attention mechanism. Let us investigate (i) the Transformer-XL and
the Compressive Transformer that rely on memory, and (ii) then the Funnel-Transformer that
iteratively compresses sequences.

Memory [22, 93]: The block-wise approach splits the input sequence into small non-overlapping
subsequences called windows, blocks, or chunks, which are processed independently; therefore,
the maximum dependency length is equal to that of the subsequence. To leverage information from
previous windows, Dai et al. [22] introduced the Transformer-XL, which relies on segment-based
recurrence between windows. This recurrence mechanism is implemented by storing the represen-
tations of the previous window in a first-in first-out memory (FIFO). Then, the attention mechanism
can attend to the representations located in this memory, but the gradients are not computed for
the attention on these elements. Although this model achieves a RECL four times greater than the
vanilla Transformer with the same parameter budget, it cannot capture dependencies outside the
FIFO memory range. Furthermore, this model is only compatible with autoregressive tasks. This
technique is analogous to truncated backpropagation through time (BPTT), except that a sequence
of hidden states is considered instead of the previous one. Figure 18 illustrates the segment-based
recurrence of the Transformer-XL.

In order to further increase the range of dependencies considered by the Transformer-XL, Rae
et al. [93] proposed the Compressive Transformer, which adds a compressed memory to the original
FIFO memory. Representations of past windows are first stored in the standard FIFO memory, like
the Transformer-XL. Then, when this memory is full, the oldest representations are compressed with
a user-defined function and stored in the compressed FIFO memory instead of being discarded. The
number of elements considered in the original FIFO memory to generate the compressed memory
depends on the chosen function. The authors propose using max/mean pooling, 1D convolution,
dilated convolutions, or the most attended representations by the attention. They also proposed to
learn the compression function with an auxiliary auto-encoding loss and a variant called attention-
reconstruction loss, which typically reconstructs the original memory from the compressed ones.
They show a clear advantage over the Transformer-XL on NLP tasks and comparable results on
speech modelling.

Fixed Fixed
(no gradient) (no gradient)

@,_ QQM

hO) ‘ 7O ‘

> o)

0l ‘*; KO ‘

0 ‘ ;

o) ‘

RO ‘ :

v ‘

© ‘ |

. Previous window . Previous window Previous window .
Current window Current window Current window
(considered) (not considered) (considered)

Fig. 18. Segment-based recurrence, which is similar to truncated BPTT. The window size is equal to two, and
only the previous window is considered. For the sake of clarity, parameters from and to states that do not
contribute are omitted.

Sequence Compression [21]: Many tasks such as image classification and sentiment analysis
only require producing a single output for the whole sequence. Dai et al. [21] argued that the
full-length sequence of hidden states may contain significant redundancy and that the model may
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not have to preserve token-level information. Consequently, they proposed the Funnel-Transformer,
whose encoder reduces the computational cost by gradually reducing the length of the hidden
states sequence with pooling. Note that instead of directly feeding the pooled sequence into the
attention layer, it is only used to construct the query matrix, while the unpooled sequence is used
to construct the key and value matrices. Additionally, the authors proposed to recover the original
sequence length by up-sampling the compressed sequence of hidden states to address the common
pre-training objectives, such as MLM, that require separate representation for each token. Although
the Funnel-Transformer effectively reduces the computational and memory cost of the encoder, the
complexity remains quadratic, and the best performances are achieved on tasks that only require
sequence-level representation.

5 SHORTCOMINGS

This section discusses the lack of understanding of the self-attention inner workings and the
limitation of the Transformer evaluation methodology, including the lack of standard benchmarks
for long-range dependencies.

Self-attention is a relatively new mechanism that has been quickly and widely adopted due
to its remarkable empirical success. Nonetheless, the self-attention inner workings are not yet
fully understood, and many questions remain unanswered, including why it works, what it learns,
and whether it is interpretable. Answering those questions is crucial to designing faster and
lighter Transformers that are competitive with the original model. As of this paper’s writing,
the deep learning community actively investigates self-attention and have proposed preliminary
answers to the aforementioned questions. For instance, evidence supporting both the self-attention
interpretability [101, 131] and non-interpretability [53] have been published. Tay et al. [113]
empirically evaluated the dot product impact on natural language processing tasks and concluded
that query-keys interaction is “useful but not that important”. Kitaev et al. [59] investigated the
impact of sharing queries and keys, and concluded that “it turns out that sharing QK does not affect
the performance of Transformer”.

Despite our current limited understanding of the self-attention mechanism, a wide range of
faster and lighter Transformers have been introduced in a short amount of time, each claiming
comparable or superior performance to the vanilla Transformer. Since there is no consensus on
how to evaluate the proposed approaches [115], researchers often have to evaluate their method on
a small range of tasks. However, different tasks may require different assumptions, which means
that one method may work well on a specific task but poorly on others. For instance, Tay et al.
[113] showed that a simple Synthesizer is highly competitive with the vanilla Transformer across a
range of natural language processing tasks, including machine translation, language modelling, and
text generation. However, Tay et al. [115] later showed that the vanilla Transformer outperforms
the Synthesizer on the more difficult Long-Range Arena benchmark. Long-Range Arena [115] is a
suite of five general and challenging tasks designed to evaluate how well Transformers capture
long-term dependencies from different modalities such as text, natural and synthetic images, and
mathematical expressions. Table 3 compiles the Long-Range Arena results of the models discussed
in the survey. For a complete description of the objectives and datasets, we refer the reader to the
original paper.

Furthermore, due to Transformers large training cost, researchers often evaluate their approach
against a limited number of models on the tasks of interest. For instance, [59] only evaluated the
Reformer against three distinct vanilla Transformers [85, 121] on three tasks. Standardized suites of
benchmarks such as GLUE and the recent Long-Range Arena allow researchers and practitioners to
evaluate only their method and compare it against a public leaderboard. Consequently, we highly
recommend that researchers consider such benchmarks.
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Although standardized benchmarks such as Long-Range Arena would help compare the models,
the results should be taken with caution since the performance depends on the model size and
hyperparameters, the speed depends on the implementation and hardware, and the memory
footprint depends on the implementation and general methods used. For instance, the Switch
Transformer uses a mixture of experts, mixed-precision, expert dropout, knowledge distillation,
and a careful initialization. Therefore, it is difficult to isolate the benefit of a single modification.

Finally, the complexity is not always representative of the practical efficiency. For instance,
the Reformer achieves an asymptotic complexity of O(nlogn) but is significantly slower than
the vanilla Transformer on small sequences, as shown in Table 3. This slow down is due to large
constants hidden in the complexity. Even when there are no hidden constants, there is a distinction
between theoretical complexity and what is achievable in practice. For instance, sparse matrix
multiplication may reduce the complexity from quadratic to linear in theory. However, it is well
known that GPUs and TPUs are not designed to perform such operations efficiently [11] and, in
practice, sparse matrix multiplication is often slower than dense ones. We encourage researchers to
explicitly report the complexity as well as the number of floating operations (FLOPs), the wall-clock
time with the hardware, and the memory footprint of their method.

Table 3. Long-Range Arena benchmark [115]. Results have been compiled from the original paper. Benchmarks
are run on 4x4 TPU V3 chips, and the memory is reported per device.

Steps per second Peak memory (GB)

Models Average score (%) K 4K K 4K
Transformer [121] 54.39 8.1 1.4 0.85 9.48
Sparse Transformer’ [16] 51.24

Longformer® [5] 53.46

BigBird [139] 55.01 7.4 1.5 0.77 2.88
Sinkhorn Transformer [114] 51.39 9.1 5.3 0.47 1.48
Reformer [59] 50.67 4.4 1.1 0.48 2.28
Linformer [126] 51.36 9.3 7.7 0.37 0.99
Synthesizer [113] 51.39 8.7 1.9 0.65 6.99
Linear Transformer [56] 50.55 9.1 7.8 0.37 1.03
Performer [18] 51.41 9.5 8.0 0.37 1.06

6 BROADER IMPACT OF EFFICIENT TRANSFORMER

This section extends the three motivations and potential impacts of lighter and faster Transformers
briefly discussed in Section 2.4.

First and foremost, computational resources are not only finite but also expensive. Consequently,
there are severe inequalities between research groups and between companies. Indeed, many
researchers do not have access to GPU or TPU farms, and most companies cannot afford to spend
thousands or millions of dollars on dedicated hardware, especially if deep learning is not their
primary focus. At this time, the resources disparities have increased dramatically to a point where
only a few parties can afford to train massive state-of-the-art models. A prime example of this
cleavage is the Transformer. Indeed, the largest Transformers are so expensive to train, even for
large companies such as Microsoft, that they are only trained once. For instance, Brown et al. [10]
noticed an issue in their pre-processing after training GPT-3. As the author explained, they could
not train their model again due to the massive cost and therefore published their results with a

9The Sparse Transformer and Longformer depends on CUDA kernels that are difficult to implement on TPUs. Therefore,
Tay et al. [115] used equivalent implementations to emulate their performance and did not report their efficiency.
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known issue. Resources inequalities also hinder creativity as researchers with promising ideas
may not be able to implement them, thus reinforcing the vicious “rich get richer” circle, where
well-funded groups and companies that have access to more resources are more likely to achieve
state-of-the-art results and receive more fundings [108].

Additionally, lower-complexity Transformers enable novel applications as extremely long se-
quences cannot be processed in a reasonable amount of time by the quadratic complexity vanilla
Transformer. For instance, Choromanski et al. [18] observed the Performer’s potential impact on
biology, and Zaheer et al. [139] evaluated BigBird on genomics tasks that take fragments of DNA as
input. Huang et al. [46] were able to generate minute-long musical compositions with a Transformer
that leverage the block-wise approach and an efficient computation of the relative attention. Note
that contrary to the attention introduced by [121], the relative attention [102] explicitly models the
input positions. The range of applications will surely expand as researchers design ever-lighter and
-faster Transformers.

Finally, recent research made it clear that we must cut carbon dioxide (CO2) emissions in half
over the next decade to limit global warming. The large-scale infrastructures used by the deep
learning community consume a considerable amount of electricity, which is mainly produced
by non-renewable sources such as coal or gas [49]. Strubell et al. [108] estimated that training a
Transformer with neural architecture search generates up to 284,000 kg of CO2. For reference,
the average American emits 16,400 kg of CO2 per year, and the average car emits about 57,200
kg during its lifetime!? (fuel included). The authors estimated that training a single instance of
BERT [24] on GPU produces about the same amount of CO2 as a trans-American flight. Although
lighter and faster models require fewer resources and therefore produce less carbon dioxide, they
are also more accessible, so we would expect more models to be trained. Overall, it is difficult to
know whether lighter and faster Transformers will positively impact the environment. Nonetheless,
researchers and practitioners ought to have in mind the significant environmental impact of their
experiments, which can be estimated with the Machine Learning Emissions Calculator!! developed
by Luccioni et al. [75].

7 FUTURE RESEARCH DIRECTIONS

In our opinion, the current research directions follow one of two purposes: (i) efficiency and
affordability or (ii) generalization performance. Since this survey addresses approaches to yield
faster and lighter Transformers, let us start with the efficiency and affordability objective.

7.1 Efficiency and Affordability

To the best of our knowledge, researchers and practitioners have not yet identified a specialized
approach that improves the Transformer’s efficiency for every task, dataset, and hardware, as
explained in Section 5. In our opinion, one of the most promising avenues is to learn adaptively
sparse patterns that are structured for the available hardware. Let us justify our claim.

The Softmax function only contains a few large values due to its exponential nature. Therefore,
it can be effectively approximated by masking the positions with small weights. In theory, the
computation and memory reduction is linearly proportional to the ratio of masked positions. In
practice, however, the improvement depends on the hardware. As of this survey’s writing, NVIDIA
is the first and only manufacturer to offer an architecture that natively supports sparse operations,
resulting in a virtually perfect speed-up. One may reasonably expect other manufacturers to follow
this direction due to the prevalence of sparse operations in deep learning. Therefore, the sparse

10 A product lifetime or lifecycle typically includes material production, manufacturing, usage, and end-of-life disposal.
Uhttps://mlco2.github.io/impact/
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patterns should be structured such that the hardware natively supports them. Handcrafting features
or patterns based on prior knowledge is known to be suboptimal. Instead, the model should learn
the patterns from the data for the task at hand. Additionally, individual samples are likely to require
different attention patterns, and hence, the patterns should be adaptative (content-based). Finally,
we believe it is beneficial to include global tokens since they allow any position to attend to any
other position in two layers, thus preserving the attention’s expressiveness.

7.2 Generalization Performance

A second research venue consists in improving the network generalization performance. Since the
deep learning renaissance associated with greedy layer-wise unsupervised pre-training [36], there
has been a clear trend towards scaling up neural networks. As a result, researchers and practitioners
have been able to leverage ever-larger datasets and ultimately improve the network’s performance.
In this setting, scaling is performed typically by increasing the number of layers, the number of
attention heads, the input embedding dimension, and the feedforward network width.

Amongst others, Radford et al. [92] introduced a large Transformer called GPT-2 and evaluated
various model sizes on language modelling tasks in a zero-shot setting. The authors reported that
the performance significantly increased with the model size ranging from 117M to 1.5B parameters.
Recently, Brown et al. [10] introduced GPT-3 based on the GPT-2 architecture and considered an
even wider span of model sizes, ranging from 125M to 175B parameters. The authors reported
that the model performance smoothly increased with the model size in most cases and suggested
that this trend should extend to even larger models. Furthermore, Devlin et al. [24] investigated
the effect of BERT size on the GLUE benchmark and concluded that “larger models lead to a strict
accuracy improvement across all four datasets, even for MRPC which only has 3,600 labeled training
examples, and is substantially different from the pre-training tasks”.

These observations suggest that researchers and practitioners must scale their model to pursue
the generalization performance objective. Inherently, scaling is resource-expensive and goes against
the affordability sought in this survey. Nonetheless, there are research directions to improve the
generalization capability of deep learning models that are orthogonal to scaling and thus compatible
with efficiency. A promising avenue is structural inductive biases. A recent structural inductive
bias inspired by independent mechanisms in the causality literature consists of designing an
architecture that learns sparsely interacting modules, each one of them specialized in a different
mechanism [37]. Ideally, individual modules should be robust to changes in the aspects of the world
that are unrelated to this module, such as in the case of distributional shift. Lamb et al. [61] applied
this idea to Transformers by introducing the Transformers with Independent Mechanisms (TIM).
The authors observed that TIM layers could be combined with the mixture of experts approach,
allowing the switching to be specific to distinct aspects of the data.

Combining universally effective and efficient approaches such as the aforementioned sparse
patterns with conditional computing and the independent mechanisms prior appears to be promising
to tackle complex tasks without relying on large-scale resources.

8 CONCLUSION

Transformers have quickly become the de facto model for processing sequences, notably achieving
state-of-the-art in most natural language processing tasks at the cost of quadratic complexity. As a
result, researchers have leveraged numerous techniques to mitigate this memory and computational
burden. This survey investigated popular general methods to make neural networks lighter and
faster and discussed their strengths and limitations. Notably, we advised researchers and prac-
titioners to use mixed-precision and gradient checkpointing due to their simplicity and overall



